Skip to main content
Log in

Full-Wafer Strain and Relaxation Mapping of Hg1−xCdxTe Multilayer Structures Grown on Cd1−yZnyTe Substrates

  • U.S. Workshop on Physics and Chemistry of II-VI Materials 2018
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

State-of-the-art Hg1−xCdxTe multilayer structures grown by molecular beam epitaxy on (211)-oriented Cd1−yZnyTe substrates have been characterized and their strain and relaxation analyzed. Techniques for measuring lattice mismatch, strain, and crystal quality by measuring symmetric and asymmetric diffraction profiles in different azimuths were adapted and performed in combination with dislocation delineation for full-wafer and multilayer characterization. It was found that the degree of lattice mismatch and in turn the strain state of epitaxial multilayers can be made uniform across full wafers in optimized structures. A strong correlation was revealed between the Zn composition of the Cd1−yZnyTe substrates and the crystal quality of the active layers in the multilayer structures. This method can be generalized to optimize multilayer structures to minimize relaxation by the generation of extended defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Zandian, M. Farris, W. McLevige, D. Edwall, E. Arkun, E. Holland, J.E. Gunn, S. Smee, D.N.B. Hall, K.W. Hodapp, A. Shimono, N. Tamura, M. Carmody, J. Auyeung, and J.W. Beletic, Proceedings of SPIE 9915, High Energy, Optical, and Infrared Detectors for Astronomy VII, 99150F (2016)

  2. D. Lee, M. Carmody, E. Piquette, P. Dreiske, A. Chen, A. Yulius, D. Edwall, S. Bhargava, M. Zandian, and W.E. Tennant, J. Electron. Mater. 45, 9 (2016).

    Google Scholar 

  3. S.M. Johnson, D.R. Rhiger, J.P. Rosbeck, J.M. Peterson, S.M. Taylor, and M.E. Boyd, J. Vac. Sci. Technol., B 10, 1499 (1992).

    Article  Google Scholar 

  4. R.S. List, J. Electron. Mater. 22, 1017 (1993).

    Article  Google Scholar 

  5. A.T. Paxton, A. Sher, M. Berding, M. Van Schilfgaarde, and M.W. Muller, J. Electron. Mater. 24, 52 (1995).

    Article  Google Scholar 

  6. A. Szilagyi and M.N. Grimbergen, J. Vac. Sci. Technol., A 4, 2200 (1986).

    Article  Google Scholar 

  7. M. Yoshikawa, K. Maruyama, T. Saito, T. Maekawa, and H. Takigawa, J. Vac. Sci. Technol., A 5, 3052 (1987).

    Article  Google Scholar 

  8. M.A. Berding, W.D. Nix, D.R. Rhiger, S. Sen, and A. Sher, J. Electron. Mater. 29, 676 (2000).

    Article  Google Scholar 

  9. M. Carmody, D. Lee, M. Zandian, J. Phillips, and J. Arias, J. Electron. Mater. 32, 710 (2003).

    Article  Google Scholar 

  10. C. Fulk, T. Parodos, P. Lamarre, S. Tobin, P. LoVecchio, and J. Markunas, J. Electron. Mater. 38, 8 (2009).

    Article  Google Scholar 

  11. J.H. van der Merwe, J. Appl. Phys. 34, 123 (1963).

    Article  Google Scholar 

  12. J.Y. Tsao and B.W. Dodson, Appl. Phys. Lett. 53, 848 (1988).

    Article  Google Scholar 

  13. J.Y. Tsao and B.W. Dodson, Surf. Sci. 228, 260 (1990).

    Article  Google Scholar 

  14. M. Li, R. Gall, C.R. Becker, T. Gerhard, W. Faschinger, and G. Landwehr, J. Appl. Phys. 82, 4860 (1997).

    Article  Google Scholar 

  15. S.M. Johnson, J.L. Johnson, W.J. Hamilton, D.B. Leonard, T.A. Strand, E.A. Patten, J.M. Peterson, J.H. Durham, V.K. Randall, T.J. deLyon, J.E. Jensen, and M.D. Gorwitz, J. Electron. Mater. 29, 680 (2000).

    Article  Google Scholar 

  16. R.H. Sewell, C.A. Musca, J.M. Dell, L. Faraone, B.F. Usher, and T. Dieing, J. Electron. Mater. 34, 795 (2005).

    Article  Google Scholar 

  17. T. Skauli, T. Colin, and S. Løvold, J. Cryst. Growth 172 97 (1997). https://doi.org/10.1016/S0022-0248(96)00732-4

  18. W.L. Bond, Acta Cryst. 13, 814 (1960).

    Article  Google Scholar 

  19. E.C. Piquette, M. Zandian, D.D. Edwall, and J.M. Arias, J. Electron. Mater. 30, 6 (2001).

    Article  Google Scholar 

  20. A.J. Wilkinson, G.R. Anstis, J.T. Czernuszka, N.J. Long, and P.B. Hirsch, Philos. Mag. A 68, 59 (1993).

    Article  Google Scholar 

  21. S.D. Carnevale, J.I. Deitz, J.A. Carlin, Y.N. Picard, D.W. McComb, M. De Graef, S.A. Ringel, and T.J. Grassman, IEEE J. Photovolt. 5, 676 (2015).

    Article  Google Scholar 

  22. K. Mukherjee, B.A. Wacaser, S.W. Bedell, and D.K. Sadana, Appl. Phys. Lett. 110, 232101 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Shojaei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shojaei, B., Cottier, R., Lee, D. et al. Full-Wafer Strain and Relaxation Mapping of Hg1−xCdxTe Multilayer Structures Grown on Cd1−yZnyTe Substrates. J. Electron. Mater. 48, 6118–6123 (2019). https://doi.org/10.1007/s11664-019-07289-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07289-1

Keywords

Navigation