Skip to main content
Log in

High Performance of a Non-Polar AlGaN-Based DUV-LED with a Quaternary Superlattice Electron Blocking Layer

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The lattice-matched AlInGaN/AlGaN quaternary superlattice electron blocking layer (EBL) has been applied in the a-plane non-polar AlGaN-based deep ultraviolet light-emitting diode (DUV-LED) to improve the DUV-LED performance. Compared to the a-plane DUV-LED with traditional AlGaN EBL, the internal quantum efficiency (IQE) of the DUV-LED with lattice-matched quaternary superlattice EBL can be enhanced by 57.1% and the optical output power is upgraded about 1.67 times at 200 mA. These results can be interpreted as the ameliorated effective barrier height for carriers, resulting in enhanced electron blocking capability and hole injection efficiency, leading to improved radiative recombination in the active region and eventually boosted optical and electrical performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y. Saito, S. Wada, K. Nagata, H. Markino, S. Boyama, H. Miwa, S. Matsui, K. Kataoka, T. Narita, and K. Horibuchi, Efficiency Improvement of AlGaN-Based Deep-Ultraviolet Light-Emitting Diodes and Their Virus Inactivation Application. Jpn. J. Appl. Phys. 60, 080501 (2021).

    Article  CAS  Google Scholar 

  2. P. Pramanik, S. Das, A. Adhikary, C.R. Chaudhuri, and A. Bhattachatyya, Design and Implementation of Water Purification System Based on Deep Ultraviolet Light Emitting Diodes and A Multi-pass Geometry Reactor. J. Water Health 18, 306 (2020).

    Article  Google Scholar 

  3. A. Pandey, W.J. Shin, J. Gim, R. Hovden, and Z. Mi, High-Efficiency AlGaN/GaN/AlGaN Tunnel Junction Ultraviolet Light-Emitting Diodes. Photonics Res. 8, 331 (2020).

    Article  CAS  Google Scholar 

  4. L. Guo, Y.A. Guo, J.K. Yang, J.C. Yan, J.G. Liu, J.X. Wang, and T.B. Wei, 275 nm Deep Ultraviolet AlGaN-Based Micro-LED Arrays for Ultraviolet Communication. IEEE Photonics J. 14, 8202905 (2022).

    CAS  Google Scholar 

  5. P.Y. Huang, L.F. Xiao, X.F. Chen, Q.P. Wang, M.S. Xu, X.G. Xu, and J. Huang, Efficiency Improvement of AlGaN-Based Deep Ultraviolet LEDs with Gradual Al-Composition Algan Conduction Layer. Optoelectron. Lett. 16, 279 (2020).

    Article  Google Scholar 

  6. T.Y. Wang, W.C. Lai, S.Y. Sie, S.P. Chang, C.H. Kuo, and J.K. Sheu, Deep Ultraviolet AlGaN-Based Light-Emitting Diodes with p-AlGaN/AlGaN Superlattice Hole Injection Structures. Processes 9, 1727 (2021).

    Article  CAS  Google Scholar 

  7. R.T. Velpula, B. Jain, S. Velpula, H.D. Nguyen, and P.T.N. Hieu, High-Performance Electron-Blocking-Layer-Free Deep Ultraviolet Light-Emitting Diodes Implementing a Strip-in-a-Barrier Structure. Opt. Lett. 45, 5125 (2020).

    Article  Google Scholar 

  8. P. Waltereit, O. Brandt, A. Trampert, H.T. Grahn, J. Menniger, M. Ramsteiner, and M. Reiche, KH, Ploog, Nitride Semiconductors free of Electrostatic Fields for Efficient White Light-Emitting Diodes. Nature 406, 865 (2000).

    Article  CAS  Google Scholar 

  9. H. Masui, S. Nakamura, S.P. DenBaars, and U.K. Mishra, Nonpolar and Semipolar III-Nitride Light-Emitting Diodes: Achievements and Challenges. IEEE Trans. Electron Dev. 57, 88 (2010).

    Article  CAS  Google Scholar 

  10. Y. Li, S. Chen, W. Tian, Z.H. Wu, Y.Y. Fang, J.N. Dai, and C.Q. Chen, Advantages of AlGaN-Based 310-nm UV Light-Emitting Diodes With Al Content Graded AlGaN Electron Blocking Layers. IEEE Photonics J. 5, 8200309 (2013).

    Article  Google Scholar 

  11. H.Z. Shi, H.M. Gu, J. Li, X.Q. Yang, J.Y. Zhang, R. Yuan, X.M. Chen, and N. Liu, Performance Improvements of AlGaN-Based Deep-Ultraviolet Light-Emitting Diodes with Specifically Designed Irregular Sawtooth Hole and Electron Blocking Layers. Opt. Commun. 441, 149 (2019).

    Article  CAS  Google Scholar 

  12. M.N. Sharif, M.I. Niass, J.J. Liou, F. Wang, and Y.H. Liu, p-AlInN Electron Blocking Layer for AlGaN-Based Deep-Ultraviolet Light-Emitting Diode. Superlattices Microstruct. 158, 107022 (2021).

    Article  CAS  Google Scholar 

  13. X. Wang, Sun H Q, Guo Z Y, Improvement of AlGaN-Based Deep Ultraviolet Light-Emitting Diodes by Using a Graded AlGaN Superlattice Hole Reservoir Layer. Opt. Mater. 86, 133 (2018).

    Article  Google Scholar 

  14. S.C. Wang, X. Zhang, H. Guo, H.Q. Yang, M. Zhu, L.W. Chen, X.H. Zeng, and Y.P. Cui, Enhanced Performance of GaN-Based Light-Emitting Diodes by Using a p-InAlGaN/GaN Superlattice as Electron Blocking Layer. J. Mod. Opt. 60, 2012 (2013).

    Article  CAS  Google Scholar 

  15. P. Du, L. Shi, S. Liu, and S.J. Zhou, High-Performance AlGaN-Based Deep Ultraviolet Light-Emitting Diodes with Different Types of InAlGaN/AlGaN Electron Blocking Layer. Jpn. J. Appl. Phys. 60, 092001 (2021).

    Article  CAS  Google Scholar 

  16. R.K. Mondal, V. Chatterjee, and S. Pal, AlInGaN-Based Superlattice p-Region for Improvement of Performance of Deep UV LEDs. Opt. Mater. 104, 109846 (2020).

    Article  CAS  Google Scholar 

  17. R.K. Mondal, V. Chatterjee, and S. Pal, Hole Transport in Ultraviolet Light-Emitting Diode via p-Type Injection Channel. IEEE Trans. Electron Devices 68, 2320 (2021).

    Article  CAS  Google Scholar 

  18. F. Bernardini and V. Fiorentini, Nonlinear Macroscopic Polarization in III-V Nitride Alloys. Phys. Rev. B 64, 085207 (2001).

    Article  Google Scholar 

  19. K. Kim, W.R.L. Lambrecht, and B. Segall, Elastic Constants and Related Properties of Tetrahedrally Bonded BN, AlN, GaN, and InN. Phys. Rev. B 53, 16310 (1996).

    Article  CAS  Google Scholar 

  20. Y.P. Varshni, Temperature Dependence of Energy Gap in Semiconductors. Physica 34, 149 (1967).

    Article  CAS  Google Scholar 

  21. M.J. Kappers, J.L. Hollander, C.F. Johnston, C. Mcaleese, D.V.S. Rao, A.M. Sanchez, C.J. Humphreys, T.J. Badcock, and P. Dawson, Properties of Non-polar a-Plane GaN/AlGaN Quantum Wells. J. Cryst. Growth 310, 4983 (2008).

    Article  CAS  Google Scholar 

  22. J.G. Zhao, X. Zhang, Z.L. Wu, L.L. Feng, L.W. Cheng, X.H. Zeng, G.H. Hu, and Y.P. Cui, Enhanced Performance of GaN-Based Light-Emitting Diodes with Composite Electron Blocking Layer. Optik 136, 558 (2017).

    Article  CAS  Google Scholar 

  23. H.C. Tao, S.R. Xu, J.C. Zhang, P.X. Li, Z.Y. Lin, and Y. Hao, Numerical Investigation on the Enhanced Performance of N-Polar AlGaN-Based Ultraviolet Light-Emitting Diodes With Superlattice p-Type Doping. IEEE Trans. Electron Devices 66, 478 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ph.D. Supporting Project of the Jinling Institute of Technology (Grant No. jit-b-201830), Hatch Project of Jinling Institute of Technology (Grant No. jit-fhxm-201904), National Natural Science Foundation of China (Grant No. 62005026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Dai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, Q., Zhang, X., Wu, Z. et al. High Performance of a Non-Polar AlGaN-Based DUV-LED with a Quaternary Superlattice Electron Blocking Layer. J. Electron. Mater. 51, 5389–5394 (2022). https://doi.org/10.1007/s11664-022-09778-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09778-2

Keywords

Navigation