Skip to main content
Log in

Efficiency improvement of AlGaN-based deep ultraviolet LEDs with gradual Al-composition AlGaN conduction layer

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

The low internal quantum efficiency (IQE) of AlGaN-based deep ultraviolet light emitting diode (DUV-LED) limits its wider application. The main reasons for low IQE include low carrier concentration, poor carrier location and large defects. The bending of energy band between AlGaN electron blocking layer and conduction layer obstructs transport of holes to multiple quantum wells. In this paper, we propose a gradual Al-composition p-type AlGaN (p-AlGaN) conduction layer to improve the light emitting properties of AlGaN-based DUV-LED. Increased carrier concentration in the active region enhances the effective radiative recombination rate of the LED. Consequently, the IQE of our optimazited DUV-LED is increased by 162% in comparison with conventional DUV-LEDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shuji Nakamura, Journal of Crystal Growth 145, 911 (1994).

    Article  ADS  Google Scholar 

  2. G. Lozano, S.R. Rodriguez, M.A. Verschuuren and J.G. Rivas, Light: Science & Applications 5, e16080 (2016).

    Article  Google Scholar 

  3. C.-J. Chen, H.-C. Chen, J.-H. Liao, C.-J. Yu and M.-C. Wu, IEEE Journal of Quantum Electronics 55, 3300106 (2019).

    Article  Google Scholar 

  4. S. Mei, X. Liu, W. Zhang, R. Liu, L. Zheng, R. Guo and P. Tian, ACS Applied Materials & Interfaces 10, 5641 (2018).

    Article  Google Scholar 

  5. R. Sharma, A.C. Kumari, M. Aggarwal and S. Ahuja, Physical Communication 33, 222 (2019).

    Article  Google Scholar 

  6. S. Rattanakul and K. Oguma, Water Research 130, 31 (2018).

    Article  Google Scholar 

  7. L.W. Gassie and J.D. Englehardt, Water Research 125, 384 (2017).

    Article  Google Scholar 

  8. X. Zhou, Z. Li, J. Lan, Y. Yan and N. Zhu, Ultrasonics Sonochemistry 35, 471 (2017).

    Article  Google Scholar 

  9. M. Fischer, M. Wahl and G. Friedrichs, Biosensors and Bioelectronics 33, 172 (2012).

    Article  Google Scholar 

  10. K.G. Kraiczek, R. Bonjour, Y. Salvadé and Z. Roland, Analytical Chemistry 86, 1146 (2014).

    Article  Google Scholar 

  11. Z. Bryan, I. Bryan, J. Xie, S. Mita, Z. Sitar and R. Collazo, Applied Physics Letters 106, 142107 (2015).

    Article  ADS  Google Scholar 

  12. B.N. Pantha, R. Dahal, M.L. Nakarmi, N. Nepal, J. Li, J.Y. Lin, H.X. Jiang, Q.S. Paduano and D. Weyburne, Applied Physics Letters 90, 241101 (2007).

    Article  ADS  Google Scholar 

  13. J. Kim, J. Pyeon, M. Jeon and O. Nam, Japanese Journal of Applied Physics 54, 081001 (2015).

    Article  ADS  Google Scholar 

  14. D. Peng, J. Yan, J. Wang, Y. Zhang, C. Geng, T. Wei, P. Conv, Y. Zhang, J. Zeng, Y. Tian, L. Sun, Q. Yan, J. Li, S. Fan and Z. Qin, Applied Physics Letters 102, 241113 (2013).

    Article  ADS  Google Scholar 

  15. H. Hirayama, S. Fujikawa, N. Noguchi, J. Norimatsu, T. Takano, K. Tsubaki and N. Kamata, Physica Status Solidi (a) 206, 1176 (2009).

    Article  ADS  Google Scholar 

  16. Z.-H. Zhang, C. Chu, C. H. Chiu, T. C. Lu, L. Li, Y. Zhang, K. Tian, M. Fang, Q. Sun, H.-C. Kuo and W. Bi, Optics Letters 42, 4533 (2017).

    Article  ADS  Google Scholar 

  17. F. Li, L. Wang, G. Zhao, Y. Meng, H. Li, S. Yang and Z. Wang, Superlattices & Microstructures 110, 324 (2017).

    Article  ADS  Google Scholar 

  18. Z.H. Zhang, S.W.H. Chen, Y. Zhang, L. Li, S.W. Wang, K. Tian, C. Chu, M. Fang, H.C. Kuo and W. Bi, ACS Photonics 4, 1846 (2017).

    Article  Google Scholar 

  19. L. Lin, Z. Yu, F. Xu, G. Ding and Y. Liu, Superlattices & Microstructures 118, 55 (2018).

    Article  ADS  Google Scholar 

  20. Y.Y. Zhang and G.R. Yao, Journal of Applied Physics 110, 977 (2011).

    Google Scholar 

  21. T.H. Ngo, B. Gil, B. Damilano, K. Lekhal and P.D. Mierry, Superlattices & Microstructures 103, 245 (2017).

    Article  ADS  Google Scholar 

  22. M. Xu, Q. Zhou, H. Zhang, W. Hong and X. Zhang, Superlattices & Microstructures 94, 25 (2016).

    Article  ADS  Google Scholar 

  23. J. Simon, V. Protasenko, C. Lian, H. Xing and D. Jena, Science 327, 60 (2010).

    Article  ADS  Google Scholar 

  24. APSYS (Version 2010), Crosslight Software Inc., Burnaby, Canada.

  25. C.S. Xia, Z. M. Simon Li and Y. Sheng, Applied Physics Letters 103, 233505 (2013).

    Article  ADS  Google Scholar 

  26. S.-J. Kim, K.J. Lee, S. Oh, J.-H. Han, D.-S. Lee and S.-J. Park, Optics Express 27, A458 (2019).

    Article  Google Scholar 

  27. Wang Huining, Ji Ziwu, Qu Shuang, Wang Gang, Jiang Yongzhi, Liu Baoli, Xu Xiangang and Mino Hirofumi, Optics Express 20, 3932 (2012).

    Article  Google Scholar 

  28. G. Liu, H. Zhao, Z. Jing, N. Tansu and R.A. Arif, Journal of Display Technology 9, 212 (2013).

    Article  ADS  Google Scholar 

  29. H. Hirayama, S. Fujikawa and N. Kamata, Electronics & Communications in Japan 98, 1 (2015).

    Article  Google Scholar 

  30. Z.H. Zhang, J. Kou, S.W.H. Chen, H. Shao, J. Che, C. Chu, K. Tian, Y. Zhang, B.I. Wengang and H.C. Kuo, Photonics Research 7, B1 (2019).

    Article  Google Scholar 

  31. S. Wang, A.Y. Yi, H. Gu, N. Wang and L. Li, Journal of Display Technology 12, 1112 (2016).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-sheng Xu  (徐明升).

Additional information

This work has been supported by the Key Research and Development Program of Shandong Province (Nos.2018GGX101027, 2017GGX201002 and 2016GGX4101), the Union Funds of Guizhou Science and Technology Department and Guizhou Minzu University China (No.LH20157221), the Yantai “13th Five-Year” Marine Economic Innovation and Development Demonstration City Project (no.YHCXZB-L-201703), and the Fundamental Research Funds of Shandong University in China (Nos.2018WLJH87, 2018JCG01 and 2017TB0021).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Py., Xiao, Lf., Chen, Xf. et al. Efficiency improvement of AlGaN-based deep ultraviolet LEDs with gradual Al-composition AlGaN conduction layer. Optoelectron. Lett. 16, 279–283 (2020). https://doi.org/10.1007/s11801-020-0072-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-020-0072-4

Document code

Navigation