Skip to main content
Log in

The Development Trend of Graphene Derivatives

  • Commentary
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Graphene has been considered a star material since its discovery in 2004 due to its attractive properties such as high electronic conductivity, large surface area, excellent mechanical stability and good heat conducting performance. The graphene technologies and derivatives have developed rapidly in the past decade and form a huge family including graphene oxides, reduced graphene oxides, graphene foam, vertical graphene, graphene sponge and other 3D graphene architectures. The fabrication methods for graphene and derivatives evolve from mechanical exfoliation to chemical exfoliation, and further update to chemical vapor deposition (CVD) and plasma enhanced CVD (PECVD) vapor deposition. Successful commercialization of graphene oxides and reduced graphene oxides have been achieved, and impressively, they are the basic building blocks for other 3D graphene architectures. However, they suffer from relatively low electronic conductivity, restacking and many defects. Meanwhile, high-quality graphene foam and vertical graphene prepared by CVD and PECVD have emerged, but their fabrication process involves high temperature and complex techniques. It is inferred that high-end 3D graphene derivatives with few defects and high electronic conductivity are the future development direction. New facile preparation methods must be developed to assemble graphene units into desired systems or configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. X.H. Xia, D.L. Chao, Y.Q. Zhang, Z.X. Shen, and H.J. Fan, Three-Dimensional Graphene and Their Integrated Electrodes. Nano Today 9, 785 (2014).

    Article  CAS  Google Scholar 

  2. L. Huang, S. Shen, Y. Zhong, Y. Zhang, L. Zhang, X. Wang, X. Xia, X. Tong, J. Zhou, and J. Tu, Multifunctional Hyphae Carbon Powering Lithium-Sulfur Batteries. Adv. Mater. 34, 2107415 (2022).

    Article  CAS  Google Scholar 

  3. L. Huang, J. Li, B. Liu, Y. Li, S. Shen, S. Deng, C. Lu, W. Zhang, Y. Xia, G. Pan, X. Wang, Q. Xiong, X. Xia, and J. Tu, Electrode Design for Lithium-Sulfur Batteries: Problems and Solutions. Adv. Funct. Mater. 30, 1910375 (2020).

    Article  CAS  Google Scholar 

  4. S. Liu, X. Xia, S. Deng, D. Xie, Z. Yao, L. Zhang, S. Zhang, X. Wang, and J. Tu, In Situ Solid Electrolyte Interphase from Spray Quenching on Molten Li: A New Way to Construct High-Performance Lithium-Metal Anodes. Adv. Mater. 31, 1806470 (2019).

    Article  CAS  Google Scholar 

  5. L. Zhang, X. Xia, Y. Zhong, D. Xie, S. Liu, X. Wang, and J. Tu, Exploring Self-Healing Liquid Na-K Alloy for Dendrite-Free Electrochemical Energy Storage. Adv. Mater. 30, 1804011 (2018).

    Article  CAS  Google Scholar 

  6. Z. Zhao, Z. Xue, Q. Xiong, Y. Zhang, X. Hu, H. Chi, H. Qin, Y. Yuan, and H. Ni, Titanium Niobium Oxides (TiNb2O7): Design, Fabrication and Application in Energy Storage Devices. Sustain. Mater. Technol. 30, e00357 (2021).

    CAS  Google Scholar 

  7. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Electric Field Effect in Atomically Thin Carbon Films. Science 306, 666 (2004).

    Article  CAS  Google Scholar 

  8. J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, and S. Roth, The Structure of Suspended Graphene Sheets. Nature 446, 60 (2007).

    Article  CAS  Google Scholar 

  9. Y. Chen, M. Wang, J. Zhang, J. Tu, J. Ge, and S. Jiao, Green and Sustainable Molten Salt Electrochemistry for the Conversion of Secondary Carbon Pollutants to Advanced Carbon Materials. J. Mater. Chem. A 9, 14119 (2021).

    Article  CAS  Google Scholar 

  10. S. Shen, R. Zhou, Y. Li, B. Liu, G. Pan, Q. Liu, Q. Xiong, X. Wang, X. Xia, and J. Tu, Bacterium, Fungus, and Virus Microorganisms for Energy Storage and Conversion, Small. Methods 3, 1900596 (2019).

    CAS  Google Scholar 

  11. S. Shen, X. Xia, Y. Zhong, S. Deng, D. Xie, B. Liu, Y. Zhang, G. Pan, X. Wang, and J. Tu, Implanting Niobium Carbide into Trichoderma Spore Carbon: A New Advanced Host for Sulfur Cathodes. Adv. Mater. 31, 1900009 (2019).

    Article  CAS  Google Scholar 

  12. S. Shen, L. Huang, X. Tong, R. Zhou, Y. Zhong, Q. Xiong, L. Zhang, X. Wang, X. Xia, and J. Tu, A Powerful One-Step Puffing Carbonization Method for Construction of Versatile Carbon Composites with High-Efficiency Energy Storage. Adv. Mater. 33, 2102796 (2021).

    Article  CAS  Google Scholar 

  13. X. Shan, Y. Zhong, L. Zhang, Y. Zhang, X. Xia, X. Wang, and J. Tu, A Brief Review on Solid Electrolyte Interphase Composition Characterization Technology for Lithium Metal Batteries: Challenges and Perspectives. J. Phys. Chem. C 125, 19060 (2021).

    Article  CAS  Google Scholar 

  14. Q. Zhao, X. Chen, W. Hou, B. Ye, Y. Zhang, X. Xia, and J. Wang, A Facile, Scalable, High Stability Lithium Metal Anode. SusMat 2, 104 (2022).

    Article  Google Scholar 

  15. H. Zhang, Y. Zhang, B. Wang, Z. Chen, Y. Sui, Y. Zhang, C. Tang, B. Zhu, X. Xie, G. Yu, Z. Jin, and X. Liu, Effect of Hydrogen in Size-Limited Growth of Graphene by Atmospheric Pressure Chemical Vapor Deposition. J. Electron. Mater. 44, 79 (2015).

    Article  CAS  Google Scholar 

  16. D. Zhu, Z. Wang, and D. Zhu, Highly Conductive Graphene Electronics by Inkjet Printing. J. Electron. Mater. 49, 1765 (2020).

    Article  CAS  Google Scholar 

  17. F. Zhu, Y. Kan, K. Tang, and S. Liu, Investigation of Thermal Properties of Ni-Coated Graphene Nanoribbons Based on Molecular Dynamics Methods. J. Electron. Mater. 46, 4733 (2017).

    Article  CAS  Google Scholar 

  18. C. Wang, Y. Li, F. Cao, Y. Zhang, X. Xia, and L. Zhang, Employing Ni-Embedded Porous Graphitic Carbon Fibers for High-Efficiency Lithium-Sulfur Batteries. ACS Appl. Mater. Interfaces 14, 10457 (2022).

    Article  CAS  Google Scholar 

  19. Y. Zhong, X. Xia, S. Deng, D. Xie, S. Shen, K. Zhang, W. Guo, X. Wang, and J. Tu, Spore Carbon from Aspergillus Oryzae for Advanced Electrochemical Energy Storage. Adv. Mater. 30, 1805165 (2018).

    Article  CAS  Google Scholar 

  20. R.Z. Li, R. Peng, K.D. Kihm, S. Bai, D. Bridges, U. Tumuluri, Z. Wu, T. Zhang, G. Compagnini, Z. Feng, and A. Hu, High-Rate in-Plane Micro-supercapacitors Scribed onto Photo Paper Using In Situ Femtolaser-Reduced Graphene Oxide/Au Nanoparticle Microelectrodes. Energy Environ. Sci. 9, 1458 (2016).

    Article  CAS  Google Scholar 

  21. Y. Li, X. Liu, L. Tan, Z. Cui, X. Yang, Y. Zheng, K.W.K. Yeung, P.K. Chu, and S. Wu, Rapid Sterilization and Accelerated Wound Healing Using Zn2+ and Graphene Oxide Modified g-C3N4 Under Dual Light Irradiation. Adv. Funct. Mater. 28, 1800299 (2018).

    Article  CAS  Google Scholar 

  22. Q. Mei, B. Liu, G. Han, R. Liu, M.Y. Han, and Z. Zhang, Graphene Oxide: From Tunable Structures to Diverse Luminescence Behaviors. Adv. Sci. 6, 1900855 (2019).

    Article  CAS  Google Scholar 

  23. Y. Tian, Z. Yu, L. Cao, X.L. Zhang, C. Sun, and D.-W. Wang, Graphene Oxide: An Emerging Electromaterial for Energy Storage and Conversion. J. Energy Chem. 55, 323 (2021).

    Article  Google Scholar 

  24. Y. Ito, Y. Tanabe, J. Han, T. Fujita, K. Tanigaki, and M. Chen, Multifunctional Porous Graphene for High-Efficiency Steam Generation by Heat Localization. Adv. Mater. 27, 4302 (2015).

    Article  CAS  Google Scholar 

  25. H. Ren, M. Tang, B. Guan, K. Wang, J. Yang, F. Wang, M. Wang, J. Shan, Z. Chen, D. Wei, H. Peng, and Z. Liu, Hierarchical Graphene Foam for Efficient Omnidirectional Solar-Thermal Energy Conversion. Adv. Mater. 29, 1702590 (2017).

    Article  CAS  Google Scholar 

  26. Z. Zhang, C.-S. Lee, and W. Zhang, Vertically Aligned Graphene Nanosheet Arrays: Synthesis, Properties and Applications in Electrochemical Energy Conversion and Storage. Adv. Energy Mater. 7, 1700678 (2017).

    Article  CAS  Google Scholar 

  27. Y. Zhang, X.H. Xia, B. Liu, S.J. Deng, D. Xie, Q. Liu, Y.D. Wang, J.B. Wu, X.L. Wang, and J.P. Tu, Multiscale Graphene-Based Materials for Applications in Sodium Ion Batteries. Adv. Energy Mater. 9, 1803342 (2019).

    Article  CAS  Google Scholar 

  28. B. Liu, Y. Zhang, Z. Wang, C. Ai, S. Liu, P. Liu, Y. Zhong, S. Lin, S. Deng, Q. Liu, G. Pan, X. Wang, X. Xia, and J. Tu, Coupling a Sponge Metal Fibers Skeleton with In Situ Surface Engineering to Achieve Advanced Electrodes for Flexible Lithium-Sulfur Batteries. Adv. Mater. 32, 2003657 (2020).

    Article  CAS  Google Scholar 

  29. S. Guo, and S. Dong, Graphene Nanosheet: Synthesis, Molecular Engineering, Thin Film, Hybrids, and Energy and Analytical Applications. Chem. Soc. Rev. 40, 2644 (2011).

    Article  CAS  Google Scholar 

  30. Z. Bo, S. Mao, Z.J. Han, K. Cen, J. Chen, and K. Ostrikov, Emerging Energy and Environmental Applications of Vertically-Oriented Graphenes. Chem. Soc. Rev. 44, 2108 (2015).

    Article  CAS  Google Scholar 

  31. D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H.B. Dommett, G. Evmenenko, S.T. Nguyen, and R.S. Ruoff, Preparation and Characterization of Graphene Oxide Paper. Nature 448, 457 (2007).

    Article  CAS  Google Scholar 

  32. S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, and R.S. Ruoff, Graphene-Based Composite Materials. Nature 442, 282 (2006).

    Article  CAS  Google Scholar 

  33. M. Wang, M. Huang, D. Luo, Y. Li, M. Choe, W.K. Seong, M. Kim, S. Jin, M. Wang, S. Chatterjee, Y. Kwon, Z. Lee, and R.S. Ruoff, Single-Crystal, Large-Area, Fold-Free Monolayer Graphene. Nature 596, 519 (2021).

    Article  CAS  Google Scholar 

  34. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, and R.S. Ruoff, Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science 324, 1312 (2009).

    Article  CAS  Google Scholar 

  35. Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei, and H.M. Cheng, Three-Dimensional Flexible and Conductive Interconnected Graphene Networks Grown by Chemical Vapour Deposition. Nat. Mater. 10, 424 (2011).

    Article  CAS  Google Scholar 

  36. Z. Bo, W. Zhu, W. Ma, Z. Wen, X. Shuai, J. Chen, J. Yan, Z. Wang, K. Cen, and X. Feng, Vertically Oriented Graphene Bridging Active-Layer/Current-Collector Interface for Ultrahigh Rate Supercapacitors. Adv. Mater. 25, 5799 (2013).

    Article  CAS  Google Scholar 

  37. S. Mao, K. Yu, S. Cui, Z. Bo, G. Lu, and J. Chen, A New Reducing Agent to Prepare Single-Layer, High-Quality Reduced Graphene Oxide for Device Applications. Nanoscale 3, 2849 (2011).

    Article  CAS  Google Scholar 

  38. C.-H. Lu, C.-M. Leu, and N.-C. Yeh, Single-Step Direct Growth of Graphene on Cu Ink toward Flexible Hybrid Electronic Applications by Plasma-Enhanced Chemical Vapor Deposition. ACS Appl. Mater. Interfaces 13, 6951 (2021).

    Article  CAS  Google Scholar 

  39. N.-C. Yeh, C.-C. Hsu, J. Bagley, and W.-S. Tseng, Single-Step Growth of Graphene and Graphene-Based Nanostructures by Plasma-Enhanced Chemical Vapor Deposition. Nanotechnology 30, 162001 (2019).

    Article  CAS  Google Scholar 

  40. C.-P. Han, V. Veeramani, C.-C. Hsu, A. Jena, H. Chang, N.-C. Yeh, S.-F. Hu, and R.-S. Liu, Vertically-Aligned Graphene Nanowalls Grown via Plasma-Enhanced Chemical Vapor Deposition as a Binder-Free Cathode in Li-O-2 Batteries. Nanotechnology 29, 505401 (2018).

    Article  CAS  Google Scholar 

  41. K. Shehzad, Y. Xu, C. Gao, and X. Duan, Three-Dimensional Macro-structures of Two-Dimensional Nanomaterials. Chem. Soc. Rev. 45, 5541 (2016).

    Article  CAS  Google Scholar 

  42. Z. Xu, and C. Gao, Graphene in Macroscopic Order: Liquid Crystals and Wet-Spun Fibers. Acc. Chem. Res. 47, 1267 (2014).

    Article  CAS  Google Scholar 

  43. Z. Xu, and C. Gao, Aqueous Liquid Crystals of Graphene Oxide. ACS Nano 5, 2908 (2011).

    Article  CAS  Google Scholar 

  44. Z. Xu, H. Sun, X. Zhao, and C. Gao, Ultrastrong Fibers Assembled from Giant Graphene Oxide Sheets. Adv. Mater. 25, 188 (2013).

    Article  CAS  Google Scholar 

  45. Z. He, Y. Zhu, Z. Xing, and Z. Wang, Cuprous Sulfide/Reduced Graphene Oxide Hybrid Nanomaterials: Solvothermal Synthesis and Enhanced Electrochemical Performance. J. Electron. Mater. 45, 285 (2016).

    Article  CAS  Google Scholar 

  46. Z. Yang, J. Tian, Z. Yin, C. Cui, W. Qian, and F. Wei, Carbon Nanotube- and Graphene-Based Nanomaterials and Applications in High-Voltage Supercapacitor: A Review. Carbon 141, 467 (2019).

    Article  CAS  Google Scholar 

  47. C. Singh, A.K. Mishra, and A. Paul, Highly Conducting Reduced Graphene Synthesis via Low Temperature Chemically Assisted Exfoliation and Energy Storage Application. J. Mater. Chem. A 3, 18557 (2015).

    Article  CAS  Google Scholar 

  48. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, and R.S. Ruoff, Synthesis of Graphene-Based Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide. Carbon 45, 1558 (2007).

    Article  CAS  Google Scholar 

  49. B.D.L. Campéon, M. Akada, M.S. Ahmad, Y. Nishikawa, K. Gotoh, and Y. Nishina, Non-destructive, Uniform, and Scalable Electrochemical Functionalization and Exfoliation of Graphite. Carbon 158, 356 (2020).

    Article  CAS  Google Scholar 

  50. M. Yang, N. Zhao, Y. Cui, W. Gao, Q. Zhao, C. Gao, H. Bai, and T. Xie, Biomimetic Architectured Graphene Aerogel with Exceptional Strength and Resilience. ACS Nano 11, 6817 (2017).

    Article  CAS  Google Scholar 

  51. B. Liu, J. Xie, H. Ma, X. Zhang, Y. Pan, J. Lv, H. Ge, N. Ren, H. Su, X. Xie, L. Huang, and W. Huang, From Graphite to Graphene Oxide and Graphene Oxide Quantum Dots. Small 13, 1601001 (2017).

    Article  CAS  Google Scholar 

  52. G.G. Batir, M. Arik, Z. Caldiran, A. Turut, and S. Aydogan, Synthesis and Characterization of Reduced Graphene Oxide/Rhodamine 101 (rGO-Rh101) Nanocomposites and Their Heterojunction Performance in rGO-Rh101/p-Si Device Configuration. J. Electron. Mater. 47, 329 (2018).

    Article  CAS  Google Scholar 

  53. S. Li, and J. Mao, The Influence of Different Types of Graphene on the Lithium Titanate Anode Materials of a Lithium Ion Battery. J. Electron. Mater. 47, 5410 (2018).

    Article  CAS  Google Scholar 

  54. F. Liu, Y. Liu, J. Ruan, L. Qin, and Y. Fan, Graphene Aerogel-Supported Silicon@Carbon Hybrids with Double Buffering Structure as Anode for Lithium-Ion Battery. J. Electron. Mater. 48, 8233 (2019).

    Article  CAS  Google Scholar 

  55. L. Ye, S. Wu, and Z. Wang, Mechanical Properties of Two-Dimensional Materials (Graphene, Silicene and MoS(2)Monolayer) Upon Lithiation. J. Electron. Mater. 49, 5713 (2020).

    Article  CAS  Google Scholar 

  56. F. Yavari, Z. Chen, A.V. Thomas, W. Ren, H.-M. Cheng, and N. Koratkar, High Sensitivity Gas Detection Using a Macroscopic Three-Dimensional Graphene Foam Network. Sci. Rep. 1, 166 (2011).

    Article  CAS  Google Scholar 

  57. K.M. Yocham, C. Scott, K. Fujimoto, R. Brown, E. Tanasse, J.T. Oxford, T.J. Lujan, and D. Estrada, Mechanical Properties of Graphene Foam and Graphene Foam-Tissue Composites. Adv. Eng. Mater. 20, 1800166 (2018).

    Article  CAS  Google Scholar 

  58. L. Jinlong, Y. Meng, K. Suzuki, and H. Miura, Fabrication of 3D Graphene Foam for a Highly Conducting Electrode. Mater. Lett. 196, 369 (2017).

    Article  CAS  Google Scholar 

  59. X. Dong, X. Wang, L. Wang, H. Song, H. Zhang, W. Huang, and P. Chen, 3D Graphene Foam as a Monolithic and Macroporous Carbon Electrode for Electrochemical Sensing. ACS Applied Materials Interfaces 4, 3129 (2012).

    Article  CAS  Google Scholar 

  60. M. Huang, C. Wang, L. Quan, T.H.-Y. Nguyen, H. Zhang, Y. Jiang, G. Byun, and R.S. Ruoff, CVD Growth of Porous Graphene Foam in Film Form. Matter 3, 487 (2020).

    Article  Google Scholar 

  61. X. Xia, D. Chao, Z. Fan, C. Guan, X. Cao, H. Zhang, and H.J. Fan, A New Type of Porous Graphite Foams and Their Integrated Composites with Oxide/Polymer Core/Shell Nanowires for Supercapacitors: Structural Design, Fabrication, and Full Supercapacitor Demonstrations. Nano Lett. 14, 1651 (2014).

    Article  CAS  Google Scholar 

  62. D. Prasai, J.C. Tuberquia, R.R. Harl, G.K. Jennings, and K.I. Bolotin, Graphene: Corrosion-Inhibiting Coating. ACS Nano 6, 1102 (2012).

    Article  CAS  Google Scholar 

  63. S. Xu, S. Wang, Z. Chen, Y. Sun, Z. Gao, H. Zhang, and J. Zhang, Electric-Field-Assisted Growth of Vertical Graphene Arrays and the Application in Thermal Interface Materials. Adv. Funct. Mater. 30, 2003302 (2020).

    Article  CAS  Google Scholar 

  64. Z. Hu, Z. Li, Z. Xia, T. Jiang, G. Wang, J. Sun, P. Sun, C. Yan, and L. Zhang, PECVD-Derived Graphene Nanowall/Lithium Composite Anodes Towards Highly Stable Lithium Metal Batteries. Energy Storage Mater. 22, 29 (2019).

    Article  Google Scholar 

  65. X. Song, J. Liu, L. Yu, J. Yang, L. Fang, H. Shi, C. Du, and D. Wei, Direct Versatile PECVD Growth of Graphene Nanowalls on Multiple Substrates. Mater. Lett. 137, 25 (2014).

    Article  CAS  Google Scholar 

  66. X. Xia, S. Deng, D. Xie, Y. Wang, S. Feng, J. Wu, and J. Tu, Boosting Sodium Ion Storage by Anchoring MoO2 on Vertical Graphene Arrays. J. Mater. Chem. A 6, 15546 (2018).

    Article  CAS  Google Scholar 

  67. S. Shen, W. Guo, D. Xie, Y. Wang, S. Deng, Y. Zhong, X. Wang, X. Xia, and J. Tu, A Synergistic Vertical Graphene Skeleton and S-C Shell to Construct High-Performance TiNb2O7-Based Core/Shell Arrays. J. Mater. Chem. A 6, 20195 (2018).

    Article  CAS  Google Scholar 

  68. Y. Li, C. Ai, S. Deng, Y. Wang, X. Tong, X. Wang, X. Xia, and J. Tu, Nitrogen Doped Vertical Graphene as Metal-Free Electrocatalyst for Hydrogen Evolution Reaction. Mater. Res. Bull. 134, 111094 (2021).

    Article  CAS  Google Scholar 

  69. X.H. Xia, J.P. Tu, Y.J. Mai, R. Chen, X.L. Wang, C.D. Gu, and X.B. Zhao, Graphene Sheet/Porous NiO Hybrid Film for Supercapacitor Applications. Chem.-Eur. J. 17, 10898 (2011).

    Article  CAS  Google Scholar 

  70. K. Yu, Z. Wen, H. Pu, G. Lu, Z. Bo, H. Kim, Y. Qian, E. Andrew, S. Mao, and J. Chen, Hierarchical Vertically Oriented Graphene as a Catalytic Counter Electrode in Dye-Sensitized Solar Cells. J. Mater. Chem. A 1, 188 (2013).

    Article  CAS  Google Scholar 

  71. Z. Bo, Y. Yang, J. Chen, K. Yu, J. Yan, and K. Cen, Plasma-Enhanced Chemical Vapor Deposition Synthesis of Vertically Oriented Graphene Nanosheets. Nanoscale 5, 5180 (2013).

    Article  CAS  Google Scholar 

  72. S. Mao, G. Lu, K. Yu, Z. Bo, and J. Chen, Specific Protein Detection Using Thermally Reduced Graphene Oxide Sheet Decorated with Gold Nanoparticle-Antibody Conjugates. Adv. Mater. 22, 3521 (2010).

    Article  CAS  Google Scholar 

  73. J. Zhan, S. Deng, Y. Zhong, Y. Wang, X. Wang, Y. Yu, X. Xia, and J. Tu, Exploring Hydrogen Molybdenum Bronze for Sodium Ion Storage: Performance Enhancement by Vertical Graphene Core and Conductive Polymer Shell. Nano Energy 44, 265 (2018).

    Article  CAS  Google Scholar 

  74. Z. Yao, X. Xia, Y. Zhong, Y. Wang, B. Zhang, D. Xie, X. Wang, J. Tu, and Y. Huang, Hybrid Vertical Graphene/Lithium Titanate–CNTs Arrays for Lithium Ion Storage with Extraordinary Performance. J. Mater. Chem. A 5, 8916 (2017).

    Article  CAS  Google Scholar 

  75. Z. Wen, X. Wang, S. Mao, Z. Bo, H. Kim, S. Cui, G. Lu, X. Feng, and J. Chen, Crumpled Nitrogen-Doped Graphene Nanosheets with Ultrahigh Pore Volume for High-Performance Supercapacitor. Adv. Mater. 24, 5610 (2012).

    Article  CAS  Google Scholar 

  76. C. Wang, Y.-S. Chui, R. Ma, T. Wong, J.-G. Ren, Q.-H. Wu, X. Chen, and W. Zhang, A Three-Dimensional Graphene Scaffold Supported Thin Film Silicon Anode for Lithium-Ion Batteries. J. Mater. Chem. A 1, 10092 (2013).

    Article  CAS  Google Scholar 

  77. Z. Yang, X. Ren, K. Guo, F. Shaik, and B. Jiang, Tuning the Composition of Tri-metal Iron Based Phosphides Integrated on Phosphorus-Doped Vertically Aligned Graphene Arrays for Enhanced Electrocatalytic Activity Towards Overall Water Splitting. Int. J. Hydrogen Energy 46, 35559 (2021).

    Article  CAS  Google Scholar 

  78. S. Pandit, Z. Cao, V.R.S.S. Mokkapati, E. Celauro, A. Yurgens, M. Lovmar, F. Westerlund, J. Sun, and I. Mijakovic, Vertically Aligned Graphene Coating is Bactericidal and Prevents the Formation of Bacterial Biofilms. Adv. Mater. Inter. 5, 1701331 (2018).

    Article  CAS  Google Scholar 

  79. S. Abolpour Moshizi, S. Azadi, A. Belford, A. Razmjou, S. Wu, Z.J. Han, and M. Asadnia, Development of an Ultra-Sensitive and Flexible Piezoresistive Flow Sensor Using Vertical Graphene Nanosheets. Nano-Micro Lett. 12, 109 (2020).

    Article  CAS  Google Scholar 

  80. K. Yu, P. Wang, G. Lu, K.-H. Chen, Z. Bo, and J. Chen, Patterning Vertically Oriented Graphene Sheets for Nanodevice Applications. J. Phys. Chem. Lett. 2, 537 (2011).

    Article  CAS  Google Scholar 

  81. H. Guo, Y. Wang, X. Yao, Y. Zhang, Z. Li, S. Pan, J. Han, L. Xu, W. Qiao, J. Li, and H. Wang, A Comprehensive Insight into Plasma-Catalytic Removal of Antibiotic Oxytetracycline Based on Graphene-TiO2-Fe3O4 Nanocomposites. Chem. Eng. J. 425, 130614 (2021).

    Article  CAS  Google Scholar 

  82. A. Mohammad, M.E. Khan, M.H. Cho, and T. Yoon, Adsorption Promoted Visible-Light-Induced Photocatalytic Degradation of Antibiotic Tetracycline by Tin Oxide/Cerium Oxide Nanocomposite. Appl. Surf. Sci. 565, 150337 (2021).

    Article  CAS  Google Scholar 

  83. R. Kumar, K. Anish Raj, S. Mita, and P. Bhargava, Carbon Derived from Sucrose as Anode Material for Lithium-Ion Batteries. J. Electron. Mater. 48, 7389 (2019).

    Article  CAS  Google Scholar 

  84. C.-T. Toh, H. Zhang, J. Lin, A.S. Mayorov, Y.-P. Wang, C.M. Orofeo, D.B. Ferry, H. Andersen, N. Kakenov, Z. Guo, I.H. Abidi, H. Sims, K. Suenaga, S.T. Pantelides, and B. Ozyilmaz, Synthesis and Properties of Free-Standing Monolayer Amorphous Carbon. Nature 577, 199 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of the Natural Science Funds for Distinguished Young Scholars of Zhejiang Province (Grant No. LR20E020001), the National Natural Science Foundation of China (Grant Nos. 52073252 and 52002052), the Key Research and Development Project of Science and Technology Department of Sichuan Province (2022YFSY0004), Zhejiang Provincial Natural Science Foundation of China (Grant No. LY22E020007), the State Key Laboratory of Silicon Materials (Grant No. SKL2021-12) and the Open Project Program of the State Key Laboratory of Photocatalysis on Energy and Environment (Grant No. SKLPEE-KF202206), Fuzhou University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongqi Zhang or Xinhui Xia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Zheng, C., Cao, F. et al. The Development Trend of Graphene Derivatives. J. Electron. Mater. 51, 4107–4114 (2022). https://doi.org/10.1007/s11664-022-09687-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09687-4

Keywords

Navigation