Skip to main content
Log in

Cuprous Sulfide/Reduced Graphene Oxide Hybrid Nanomaterials: Solvothermal Synthesis and Enhanced Electrochemical Performance

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The cuprous sulfide nanoparticles (CuS NPs)-decorated reduced graphene oxide (rGO) nanocomposites have been successfully prepared via a facile and efficient solvothermal synthesis method. Scanning electron microscopy and transmission electron microscopy images demonstrated that CuS micronspheres composed of nanosheets and distributed on the rGO layer in well-monodispersed form. Fourier-transform infrared spectroscopy analyses and x-ray photoelectron spectroscopy showed that graphene oxide (GO) had been reduced to rGO. The electrochemical performances of CuS/rGO nanocomposites were investigated by cyclic voltammetry and charge/discharge techniques, which showed that the specific capacitance of CuS/rGO nanocomposites was enhanced because of the introduction of rGO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Xu, L. Zhang, H. Cheng, and Y. Zhu, Appl. Catal. B.-Environ. 3, 382 (2011).

    Article  Google Scholar 

  2. G. Williams, B. Seger, and P.V. Kamat, Langmuir 25, 13869 (2009).

    Article  Google Scholar 

  3. A. Cao, Z. Liu, S. Chu, M. Wu, Z. Ye, Z. Cai, Y. Chang, S. Wang, Q. Cong, and Y. Liu, Adv. Mater. 22, 103 (2010).

    Article  Google Scholar 

  4. Z. Chen, S. Berciaud, C. Nuckolls, T.F. Heinz, and L.E. Brus, ACS Nano. 4, 2964 (2010).

    Article  Google Scholar 

  5. W.S. Hummers and R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958).

    Article  Google Scholar 

  6. J.F. Shen, Y.Z. Hu, C. Li, C. Qin, and M.X. Ye, Small 5, 82 (2009).

    Article  Google Scholar 

  7. J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, and S. Roth, Nature 446, 60 (2007).

    Article  Google Scholar 

  8. J.J. Shi, X.Y. Zhou, Y. Liu, Q.M. Su, J. Zhang, and G.H. Du, Mater. Lett. 126, 220 (2014).

    Article  Google Scholar 

  9. C. Xu, X. Wang, L. Yang, and Y. Wu, J. Solid State Chem. 182, 2486 (2009).

    Article  Google Scholar 

  10. Y. Xu, Z. Liu, X. Zhang, Y. Wang, J. Tian, Y. Huang, Y. Ma, X. Zhang, and Y. Chen, Adv. Mater. 21, 1275 (2009).

    Article  Google Scholar 

  11. Y. Wen, H. Ding, and Y. Shan, Nanoscale 3, 4411 (2011).

    Article  Google Scholar 

  12. G.M. Zhou, D.W. Wang, F. Li, L.L. Zhang, N. Li, and Z.S. Wu, Chem. Mater. 22, 5306 (2010).

    Article  Google Scholar 

  13. X.J. Zhao, F.Y. Zhang, D.B. Lu, Y.L. Du, W.C. Ye, and C.M. Wang, Anal. Methods 5, 3992 (2013).

    Article  Google Scholar 

  14. F. Li, J.F. Wu, Q.H. Qin, Z. Li, and X.T. Huang, Powder Technol 198, 267 (2010).

    Article  Google Scholar 

  15. G.D. Nie, L. Zhang, X.F. Lu, X.J. Bian, W.N. Sun, and C. Wang, Dalton Trans. 42, 14006 (2013).

    Article  Google Scholar 

  16. F.Z. Liu, X. Shao, H.Y. Li, M. Wang, and S.R. Yang, Mater. Lett. 108, 125 (2013).

    Article  Google Scholar 

  17. D.H. Xiang, Y.B. Zhu, J. Luo, and L.T. Guo, Acta Chim. Sinica 13, 1540 (2011).

    Google Scholar 

  18. X. Chen, X.J. Huang, L.T. Kong, Z. Guo, X.C. Fu, M.Q. Li, and J.H. Liu, J. Mater. Chem. 20, 352 (2010).

    Article  Google Scholar 

  19. C.M. Park, Y. Hwa, N.E. Sun, and H.J. Sohn, J. Mater. Chem 20, 1097 (2010).

    Article  Google Scholar 

  20. J.F. Shen, Y.Z. Hu, C. Li, C. Qin, and M.X. Ye, Small 5, 82 (2009).

    Article  Google Scholar 

  21. C. Xu, X. Wang, L. Yang, and Y. Wu, J. Solid State Chem. 182, 2486 (2009).

    Article  Google Scholar 

  22. Y. Xu, Z. Liu, X. Zhang, Y. Wang, J. Tian, Y. Huang, Y. Ma, X. Zhang, and Y. Chen, Adv. Mater. 21, 1275 (2009).

    Article  Google Scholar 

  23. Y. Wen, H. Ding, and Y. Shan, Nanoscale 3, 4411 (2011).

    Article  Google Scholar 

  24. H.C. Tao, X.L. Yang, L.L. Zhang, and S.B. Ni, J. Phys. Chem. Solids 75, 1205 (2014).

    Article  Google Scholar 

  25. Z.N. Yu, M. McInnis, J. Calderon, S. Seal, and L. Zhain, Jayan Thomas Nano Energy 11, 611 (2015).

    Article  Google Scholar 

  26. R. Ruffo, S.S. Hong, C.K. Chan, R.A. Huggins, and Y. Cui, J. Phys. Chem. C 113, 11390 (2009).

    Article  Google Scholar 

Download references

Acknowledgement

We gratefully acknowledge financial support from the Fundamental Research Funds for the Central Universitiesin China (Grant No. 2013XK07) and the Fundamental Research Funds of CUMT (Grant No. 2015XKQK02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yabo Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Z., Zhu, Y., Xing, Z. et al. Cuprous Sulfide/Reduced Graphene Oxide Hybrid Nanomaterials: Solvothermal Synthesis and Enhanced Electrochemical Performance. J. Electron. Mater. 45, 285–290 (2016). https://doi.org/10.1007/s11664-015-4207-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4207-5

Keywords

Navigation