Skip to main content
Log in

Investigation of the Structural, Electronic, Elastic, Thermodynamic, and Thermoelectric Properties of HfXPb (X = Ni, Pd, Pt): First-Principles Study

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The 18-valence electron ABX families of compounds have a variety of attractive physical properties. In this work, using the (FP-L/APW + lo) method on the basis of density functional theory, we have investigated the structural, electronic, elastic, thermodynamic, and transport properties of the HfXPb (X = Ni, Pd, Pt), in the cubic half-Heusler LiAlSi-type (F-43m) structure. The calculated elastic constants for these compounds showed that they are mechanically stable. Considering the Tran–Blaha-modified Becke–Johnson potential which provides a better description of the electronic structures, we have found that all three compounds are narrow-gap semiconductors. Furthermore, the thermoelectric properties depending on the chemical potential and charge carrier densities at different temperatures, 300 K, 600 K, and 900 K, are thus evaluated from the semi classical Boltzmann transport equation. The lattice thermal conductivity has been calculated by using a simplified model. Moreover, the most important thermodynamic properties, such as the Debye temperature, the thermal expansion coefficient, the heat capacity, and the entropy, have been predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. R. Gautier, X. Zhang, L. Hu, L. Yu, Y. Lin, T.O.L. Sunde, D. Chon, K.R. Poeppelmeier, and A. Zunger, Prediction and accelerated laboratory discovery of previously unknown 18-electron ABX compounds. Nat. Chem. 7, 308 (2015).

    Article  CAS  Google Scholar 

  2. X. Zhang, Yu. Liping, A. Zakutayev, and A. Zunger, Sorting stable versus unstable hypothetical compounds: the case of multi-functional ABX half-Heusler filled tetrahedral structures. Adv. Funct. Mater. 22, 1425 (2012).

    Article  CAS  Google Scholar 

  3. S. Curtarolo, G.L.W. Hart, M.B. Nardelli, N. Mingo, and S.S.O. Levy, The high-throughput highway to computational materials design. Nat. Mater. 12, 191 (2013).

    Article  CAS  Google Scholar 

  4. T. Gruhn, Comparative ab initio study of half-Heusler compounds for optoelectronic applications. Phys. Rev. B 82, 125210 (2010).

    Article  CAS  Google Scholar 

  5. A. Roy, J.W. Bennett, K.M. Rabe, and D. Vanderbilt, Half-Heusler semiconductors as piezoelectrics. Phys. Rev. Lett. 109, 037602 (2012).

    Article  CAS  Google Scholar 

  6. D.J. Singh, Doping-dependent thermopower of PbTe from Boltzmann transport calculations. Phys. Rev. B 81, 195217 (2010).

    Article  CAS  Google Scholar 

  7. L. Chaput, J. Tobola, P. Pécheur, and H. Scherrer, Electronic structure and thermopower of Ni(Ti0.5Hf0.5)Sn and related half-Heusler phases. Phys. Rev. B 73, 045121 (2006).

    Article  CAS  Google Scholar 

  8. J. Yang, H. Li, T. Wu, W. Zhang, L. Chen, and J. Yang, Evaluation of half-Heusler compounds as thermoelectric materials based on the calculated electrical transport properties. Adv. Funct. Mater. 18, 2880 (2008).

    Article  CAS  Google Scholar 

  9. S. Singh, Assessing the thermoelectric properties of ScRhTe half-Heusler compound. Comput. Condens. Matter 13, 120 (2017).

    Article  Google Scholar 

  10. S. Chibani, O. Arbouche, M. Zemouli, K. Amara, Y. Benallou, Y. Azzaz, B. Belgoumene, A. Bentayeb, and M. Ameri, Ab initio prediction of the structural, electronic, elastic and thermoelectric properties of half-Heusler ternary compounds TiIrX (X = As and Sb). J. Electron. Mater. 47, 196 (2018).

    Article  CAS  Google Scholar 

  11. N. Chami, O. Arbouche, S. Chibani, F.Z.D. Khodja, K. Amara, M. Ameri, Y. Al-Douri, and M. Adjdir, Computational prediction of structural, electronic, elastic and thermoelectric properties of FeVX (X = As, P) half-Heusler compounds. J. Electron. Mater. 49, 4916 (2020).

    Article  CAS  Google Scholar 

  12. F. Hosseinzadeh, A. Boochani, S.M. Elahi, and Z. Ghorannevis, Vanadium effect on the electronic and thermoelectric properties of ScPtBi compound. Int. Nano Lett. 10, 225 (2020).

    Article  CAS  Google Scholar 

  13. W. Zheng, Y. Lu, Y. Li, J. Wang, Z. Hou, and X. Shao, Structural and thermoelectric properties of Zr-doped TiPdSn half-Heusler compound by first-principles calculations. Chem. Phys. Lett. 741, 137055 (2020).

    Article  CAS  Google Scholar 

  14. Z.A.A.R. Almaghbash, O. Arbouche, A. Dahani, A. Cherifi, M. Belabbas, A. Zenati, H. Mebarki, and A. Hussain, Thermoelectric and piezoelectric properties in half-Heusler compounds TaXSn (X = Co, Rh and Ir) based on ab initio calculations. Int. J. Thermophys. 42, 5 (2021).

    Article  CAS  Google Scholar 

  15. H. Alam and S. Ramakrishna, A review on the enhancement of figure of merit from bulk to nano-thermoelectric materials. Nano Energy 2, 190 (2013).

    Article  CAS  Google Scholar 

  16. P. Hohenberg and W. Kohn, Density functional theory (DFT). Phys. Rev. B 136, 864 (1964).

    Article  Google Scholar 

  17. W. Kohn and L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965).

    Article  Google Scholar 

  18. R.G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules (New York: Oxford University Press, 1989).

    Google Scholar 

  19. R.O. Jones and O. Gunnarsson, The density functional formalism, its applications and prospects. Rev. Mod. Phys. 61, 689 (1989).

    Article  CAS  Google Scholar 

  20. J.K. Labanowski and J.W. Andzelrn, Density Functional Methods in Chemistry (New York: Springer, 1991).

    Book  Google Scholar 

  21. G.B. Johnson, P.M.W. Gill, and J.A. Pople, The performance of a family of density functional methods. J. Chem. Phys. 98, 5612 (1993).

    Article  CAS  Google Scholar 

  22. P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k, an Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Wien: Technical University, 2001).

    Google Scholar 

  23. M.A. Blanco, E. Francisco, and V. Luana, GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model. Comput. Phys. Commun. 158, 57 (2004).

    Article  CAS  Google Scholar 

  24. G.K.H. Madsen and D.J. Singh, BoltzTraP. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175, 67 (2006).

    Article  CAS  Google Scholar 

  25. O.K. Andersen, Linear methods in band theory. Phys. Rev. B 12, 3060 (1975).

    Article  CAS  Google Scholar 

  26. E. Sjöstedt, L. Nordström, and D.J. Singh, An alternative way of linearizing the augmented plane-wave method. Solid State Commun. 114, 15 (2000).

    Article  Google Scholar 

  27. K. Schwarz, P. Blaha, and G.K.H. Madsen, Electronic structure calculations of solids using the WIEN2k package for material sciences. Comput. Phys. Commun. 147, 71 (2002).

    Article  Google Scholar 

  28. D.J. Singh and L. Nordström, Planewaves, Pseudopotentials, and the LAPW Method, 2nd ed., (New York: Springer, 2006).

    Google Scholar 

  29. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, and K. Burke, Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).

    Article  CAS  Google Scholar 

  30. F. Tran and P. Blaha, Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102, 226401 (2009).

    Article  CAS  Google Scholar 

  31. J.P. Perdew and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244 (1992).

    Article  CAS  Google Scholar 

  32. J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)]. Phys. Rev. Lett. 78, 1396 (1997).

    Article  CAS  Google Scholar 

  33. M. Jamal, IRelast. http://www.wien2k.at/ (2014).

  34. G.A. Slack, Nonmetallic crystals with high thermal conductivity. J. Phys. Chem. Solids 34, 321 (1973).

    Article  CAS  Google Scholar 

  35. F.D. Murnaghan, The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. U. S. A. 30, 244 (1944).

    Article  CAS  Google Scholar 

  36. K. Kaur, D.P. Rai, R.K. Thapa, and S. Srivastava, Structural, electronic, mechanical, and thermoelectric properties of a novel half Heusler compound HfPtPb. J. App. Phys. 122, 045110 (2017).

    Article  CAS  Google Scholar 

  37. G. Wang and D. Wang, Electronic structure and thermoelectric properties of Pb-based half- Heusler compounds: ABPb (A = Hf, Zr; B = Ni, Pd). J. Alloys Compd. 682, 375 (2016).

    Article  CAS  Google Scholar 

  38. J. Heyd, G.E. Scuseria, and M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential [J. Chem. Phys. 118, 8207 (2003)]. J. Chem. Phys. 124, 219906 (2006).

    Article  CAS  Google Scholar 

  39. B.R.K. Nanda and I. Dasgupta, Electronic structure and magnetism in half-Heusler compounds. J. Phys. Condens. Matter 15, 7307 (2003).

    Article  CAS  Google Scholar 

  40. I. Galanakis, P.H. Dederichs, and N. Papanikolaou, Origin and properties of the gap in the half-ferromagnetic Heusler alloys. Phys. Rev. B 66, 134428 (2002).

    Article  CAS  Google Scholar 

  41. L. Offernes, P. Ravindran, and A. Kjekshus, Electronic structure and chemical bonding in half-Heusler phases. J. Alloys Compd. 439, 37 (2007).

    Article  CAS  Google Scholar 

  42. S.F. Pugh, Relations between the elastic moduli and the plastic properties of poly-crystalline pure metals. Philos. Mag. 45, 823 (1954).

    Article  CAS  Google Scholar 

  43. M. Born, On the stability of crystal lattices, I. Math. Proc. Camb. Philos. Soc. 36, 160 (1940).

    Article  CAS  Google Scholar 

  44. R. Hill, The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. 65, 349 (1952).

    Article  Google Scholar 

  45. C. Zener, Elasticity and Anelasticity of Metals (Chicago: University of Chicago, 1948).

    Google Scholar 

  46. J. Haines, J.M. Leger, and G. Bocquillon, Synthesis and design of superhard materials. Ann. Rev. Mater. Res. 31, 1 (2001).

    Article  CAS  Google Scholar 

  47. O.L. Anderson, A simplified method for calculating the Debye temperature from elastic constants. J. Phys. Chem. Solids 24, 909 (1963).

    Article  CAS  Google Scholar 

  48. W. Li, J. Carrete, N.A. Katcho, and N. Mingo, ShengBTE: a solver of the Boltzmann transport equation for phonons. Comput. Phys. Commun. 185, 1747 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Algerian University research project (PRFU) under grant Number B00L02UN220120180007 and the General Directorate for Scientific Research and Technological Development (DGRSDT), Algeria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azziz Zenati.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zenati, A., Arbouche, O., Boukabrine, F. et al. Investigation of the Structural, Electronic, Elastic, Thermodynamic, and Thermoelectric Properties of HfXPb (X = Ni, Pd, Pt): First-Principles Study. J. Electron. Mater. 51, 2450–2463 (2022). https://doi.org/10.1007/s11664-022-09506-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09506-w

Keywords

Navigation