Skip to main content
Log in

Ab Initio Prediction of the Structural, Electronic, Elastic, and Thermoelectric Properties of Half-Heusler Ternary Compounds TiIrX (X = As and Sb)

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The structural, electronic, elastic, and thermoelectric properties of TiIrX (X = As and Sb) half-Heusler compounds with 18 valence electrons were studied using density functional theory. The generalized gradient approximation of Perdew–Burke and Ernzerhof used for calculation of the structural parameters and elastic properties of TiIrAs and TiIrSb denotes that the computed lattice constants were in excellent agreement with the available experimental data and previous theoretical works. Furthermore, the calculated elastic constants for both compounds satisfy the Born criteria indicating their mechanical stabilities. The modified Becke–Johnson potential (TB-mBJ) was used to provide a better description of the electronic structures, which indicate that both compounds are narrow-gap semiconductors. Additionally, the investigations of thermoelectric performance were carried out using the results of ab initio band-structure calculations and the semi-classical Boltzmann theory within the constant relaxation time approximations. The predicted values of the figure of merit ZT e are close to unity at room temperature. This reveals that TiIrAs and TiIrSb compounds are excellent candidates for practical applications in the thermoelectric devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Ohta, K. Sugiura, and K. Koumoto, Inorg. Chem. 47, 8429 (2008).

    Article  Google Scholar 

  2. K. Biswas, J. He, I.D. Blum, C.I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, and M.G. Kanatzidis, Nature 489, 414 (2012).

    Article  Google Scholar 

  3. H.J. Goldsmid and R.W. Douglas, Br. J. Appl. Phys. 5, 386 (1954).

    Article  Google Scholar 

  4. T.M. Tritt, Annu. Rev. Mater. Res. 41, 433 (2011).

    Article  Google Scholar 

  5. S. Walia, R. Weber, S. Balendhran, D. Yao, J.T. Abrahamson, S. Zhuiykov, M. Bhaskaran, S. Sriram, M.S. Strano, and K. Kalantar-zadeh, Chem. Commun. 48, 7462 (2012).

    Article  Google Scholar 

  6. H. Hohl, A.P. Ramirez, C. Goldmann, G. Ernst, B. Wlfing, and E. Bucher, J. Phys.: Condens. Matter 11, 1697 (1999).

    Google Scholar 

  7. G.S. Nolas, J. Poon, and M. Kanatzidis, MRS Bull. 31, 199 (2006).

    Article  Google Scholar 

  8. C. Yu, T.-J. Zhu, R.-Z. Shi, Y. Zhang, X.-B. Zhao, and J. He, Acta Mater. 57, 2757 (2009).

    Article  Google Scholar 

  9. G. Li, K. Kurosaki, Y. Ohishi, H. Muta, and S. Yamanaka, Jpn. J. Appl. Phys. 52, 041804 (2013).

    Article  Google Scholar 

  10. S. Populoh, M.H. Aguirre, O.C. Brunko, K. Galazka, Y. Lu, and A. Weidenkaff, Scripta Mater. 66, 1073 (2012).

    Article  Google Scholar 

  11. G. Joshi, X. Yan, H. Wang, W. Li, G. Chen, and Z. Ren, Adv. Energy Mater. 1, 643 (2011).

    Article  Google Scholar 

  12. C. Uher, J. Yang, S. Hu, D.T. Morelli, and G.P. Meisner, Phys. Rev. B. 59, 8615 (1999).

    Article  Google Scholar 

  13. W. Xie, A. Weidenkaff, X. Tang, Q. Zhang, J. Poon, and T.M. Tritt, Nanomaterials 2, 379 (2012).

    Article  Google Scholar 

  14. C.G. Fu, H.H. Xie, Y.T. Liu, T.J. Zhu, J. Xie, and X.B. Zhao, Intermetallics 32, 39 (2013).

    Article  Google Scholar 

  15. P. Qiu, J. Yang, X. Huang, X. Chen, and L. Chen, Appl. Phys. Lett. 96, 152105 (2010).

    Article  Google Scholar 

  16. G.K.H. Madsen, J. Am. Chem. Soc. 128, 12140 (2006).

    Article  Google Scholar 

  17. G. Ding, G.Y. Gao, L. Yu, Y. Ni, and K. Yao, J. Appl. Phys. 119, 025105 (2016).

    Article  Google Scholar 

  18. J.M. Mena, H.G. Schoberth, T. Gruhn, and H. Emmerich, J. Alloys Compd. 650, 728 (2015).

    Article  Google Scholar 

  19. J. Yang, Z.G. Mei, L. Xi, W. Zhang, and L.D. Chen, Proceedings of International Symposium on EcoTopia Science ISETS’07 (2007), pp. 52–57.

  20. Y. Benallou, K. Amara, B. Doumi, O. Arbouche, M. Zemouli, B. Bekki, and A. Mokaddem, J. Comput. Electron. 016, 1 (2016).

    Article  Google Scholar 

  21. G. Wang and D. Wang, J. Alloys Compd. 682, 375 (2016).

    Article  Google Scholar 

  22. K. Manoj and B. Yadav, J. Alloys Compd. 622, 388 (2015).

    Article  Google Scholar 

  23. G. Ding, G.Y. Gao, and K.L. Yao, J. Appl. Phys. 47, 385305 (2014).

    Google Scholar 

  24. J. Oestreich and U. Probst, Twenty-First International Conference on Thermoelectrics Proceedings ICT’02. (2002), pp. 135–138.

  25. F. Kong, Y. Hu, H. Hou, Y. Liu, B. Wang, and L. Wang, J. Solid State Chem. 196, 511 (2012).

    Article  Google Scholar 

  26. M. Onoue, F. Ishii, and T. Oguchi, J. Phys. Soc. Jpn. 77, 054706 (2008).

    Article  Google Scholar 

  27. K. Benchrif, A. Yakoubi, N. Della, O.M. Abid, H. Khachai, R. Ahmed, R. Khenata, S.B. Omran, S.K. Gupta, and G. Murttaza, J. Electron. Mater. 45, 3479 (2016).

    Article  Google Scholar 

  28. O.M. Abid, S. Menouer, A. Yakoubi, H. Khachai, S. Bin Omran, G. Murtaza, D. Prakash, R. Khenata, and K.D. Verma, Superlattices Microstruct. 93, 171 (2016).

    Article  Google Scholar 

  29. T. Djaafri, A. Djaafri, A. Elias, G. Murtaza, R. Khenata, R. Ahmed, S. Bin Omran, and D. Rached, Chin. Phys. B 23, 087103 (2014).

    Article  Google Scholar 

  30. R. Gautier, X. Zhang, L. Hu, L. Yu, Y. Lin, T.O.L. Sunde, D. Chon, K.R. Poeppelmeier, and A. Zunger, Nat. Chem. 7, 308 (2015).

    Article  Google Scholar 

  31. J. Heyd, G.E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003).

    Article  Google Scholar 

  32. M.E. Shatsalaa, M. Magetoa, G. Manyalia, and M. Mghendib, Energy Procedia 93, 191 (2016).

    Article  Google Scholar 

  33. W. Kohn and L.J. Sham, Phys. Rev. 140, 1133 (1965).

    Article  Google Scholar 

  34. E. Sjöstedt, L. Nordström, and D.J. Singh, Solid State Commun. 114, 15 (2000).

    Article  Google Scholar 

  35. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k: an Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Vienna: Vienna University of Technology, 2001).

    Google Scholar 

  36. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, and K. Burke, Phys. Rev. Lett. 100, 136406 (2008).

    Article  Google Scholar 

  37. F. Tran, P. Blaha, M. Betzinger, and S. Blügel, Phys. Rev. Lett. 102, 226401 (2009).

    Article  Google Scholar 

  38. H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  Google Scholar 

  39. J.D. Pack and H.J. Monkhorst, Phys. Rev. 16, 1748 (1977).

    Article  Google Scholar 

  40. G.K.H. Madsen and D.J. Singh, Phys. Commun. 175, 67 (2006).

    Article  Google Scholar 

  41. F.D. Murnaghan, Proc. Nat. Acad. Sci. USA 30, 244 (1944).

    Article  Google Scholar 

  42. Y. Le Page and P. Saxe, Phys. Rev. B. 65, 104104 (2002).

    Article  Google Scholar 

  43. M. Jamal, S. Jalali Asadabadi, I. Ahmad, and H.A. Rahnamaye Aliabad, Comput. Mater. Sci. 95, 592 (2014).

    Article  Google Scholar 

  44. S.Q. Wang and H.Q. Ye, Phys. Stat. Sol. (b) 240, 45 (2003).

    Article  Google Scholar 

  45. B. Mayer, H. Anton, E. Bott, M. Methfessel, J. Sticht, J. Harris, and P.C. Schmidt, Intermetallics 11, 23 (2003).

    Article  Google Scholar 

  46. A. Maachou, H. Aboura, B. Amrani, R. Khenata, S. Bin Omran, and D. Varshney, Comput. Mater. Sci. 50, 3123 (2011).

    Article  Google Scholar 

  47. M. Hachemaoui, R. Khenata, A. Bouhemadou, A.H. Reshak, D. Rached, and F. Semari, Curr. Opin. Solid State Mater. Sci. 13, 105 (2009).

    Article  Google Scholar 

  48. A. Bouhemadou and R. Khenata, Phys. Lett. A 362, 476 (2007).

    Article  Google Scholar 

  49. M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Oxford: Oxford Clarendon Press, 1956), pp. 120–156.

  50. P. Ravindran, L. Fast, P. Korzhavyi, B. Johansson, J. Wills, and O. Eriksson, J. Appl. Phys. 84, 4891 (1998).

    Article  Google Scholar 

  51. S.F. Pugh, Philos. Mag. 45, 823 (1954).

    Article  Google Scholar 

  52. H.A.R. Aliabad, M. Ghazanfari, I. Ahmad, and M.A. Saeed, Comput. Mater. Sci. 65, 509 (2012).

    Article  Google Scholar 

  53. J.H. Lee, J. Wu, and J.C. Grossman, Phys. Rev. Lett. 104, 016602 (2010).

    Article  Google Scholar 

  54. O. Rabin, L. Yu-Ming, and M.S. Dresselhaus, Appl. Phys. Lett. 79, 81 (2001).

    Article  Google Scholar 

  55. T. Takeuchi, Mater. Trans. 50, 2359 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Arbouche.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chibani, S., Arbouche, O., Zemouli, M. et al. Ab Initio Prediction of the Structural, Electronic, Elastic, and Thermoelectric Properties of Half-Heusler Ternary Compounds TiIrX (X = As and Sb). J. Electron. Mater. 47, 196–204 (2018). https://doi.org/10.1007/s11664-017-5761-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5761-9

Keywords

Navigation