Skip to main content
Log in

Computational Prediction of Structural, Electronic, Elastic, and Thermoelectric Properties of FeVX (X = As, P) Half-Heusler Compounds

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Structural, electronic, elastic, and transport properties of FeVX (X = As, P) half-Heusler (HH) compounds have been calculated using density functional theory (DFT). The generalized gradient approximation developed by Perdew–Burke–Ernzerhof (GGA-PBE) is utilized for the calculation of the structural properties and the mechanical parameters of FeVX (X = As, P), indicating that the studied compounds are mechanically stable. The Tran and Blaha-modified Becke–Johnson potential (TB-mBJ) is utilized to improve the investigation of the electronic structure and also indicates that the FeVX (X = As, P) compounds are narrow-gap semiconductors. Calculations of transport efficiency are performed using the semiclassical Boltzmann theory. The figure of merit ZT is near unity at room temperature, indicating that both compounds are good candidates for use in transport devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Boyle, Renewable Energy (Oxford: Open University, 2004).

    Google Scholar 

  2. T. Caillat, J.-P. Fleurial, and A. Borshchevsky, J. Phys. Chem. Solids 58, 1119 (1997).

    Article  CAS  Google Scholar 

  3. A. Hong, L. Li, R. He, J. Gong, Z. Yan, K. Wang, J.-M. Liu, and Z. Ren, Sci. Rep. 6, 22778 (2016).

    Article  CAS  Google Scholar 

  4. J. Ma, V.I. Hegde, K. Munira, Y. Xie, S. Keshavarz, D.T. Mildebrath, C. Wolverton, A.W. Ghosh, and W. Butler, Phys. Rev. B 95, 024411 (2017).

    Article  Google Scholar 

  5. F. Shi, M. Si, J. Xie, K. Mi, C. Xiao, and Q. Luo, J. Appl. Phys. 122, 215701 (2017).

    Article  Google Scholar 

  6. W. Xie, A. Weidenkaff, X. Tang, Q. Zhang, J. Poon, and T.M. Tritt, Nanomaterials 2, 379 (2012).

    Article  CAS  Google Scholar 

  7. F. Rosi, E. Hockings, and N. Lindenblad, RCA Rev. (US) 22, 82 (1961).

    Google Scholar 

  8. M.-S. Lee, F.P. Poudeu, and S. Mahanti, Phys. Rev. B 83, 085204 (2011).

    Article  Google Scholar 

  9. W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965).

    Article  Google Scholar 

  10. G. Heyd, J. Chem. Phys 118, 8207 (2003).

    Article  CAS  Google Scholar 

  11. R. Ahmad, A. Gul, and N. Mehmood, Mater. Res. Express 6, 046517 (2019).

  12. J. Sjöström and T. Jarlborg, J. Magn. Magn. Mater. 98, 85 (1991).

    Article  Google Scholar 

  13. E. Sjöstedt, L. Nordström, and D. Singh, Solid State Commun. 114, 15 (2000).

    Article  Google Scholar 

  14. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Knasnicka, and J. Lunitz, Wien2k, An Augmented Plane Wave Plus Local Orbital Programme for Calculating Crystal Properties, Vienna University of Technology, Vienna, Austria, 2001.

  15. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  16. S. Kumar, S. Pandey, and S. Auluck, Adv. Opt. Mater. 2, 10 (2014).

    Article  Google Scholar 

  17. H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  Google Scholar 

  18. J.D. Pack and H.J. Monkhorst, Phys. Rev. B 16, 1748 (1977).

    Article  Google Scholar 

  19. G.K. Madsen and D.J. Singh, Comput. Phys. Commun. 175, 67 (2006).

    Article  CAS  Google Scholar 

  20. F. Murnaghan, Proc. Natl. Acad. Sci. U. S. A. 30, 244 (1944).

    Article  CAS  Google Scholar 

  21. J. Ma, J. He, D. Mazumdar, K. Munira, S. Keshavarz, T. Lovorn, C. Wolverton, A.W. Ghosh, and W.H. Butler, Phys. Rev. B 98, 094410 (2018).

    Article  CAS  Google Scholar 

  22. Y. Le Page and P. Saxe, Phys. Rev. B 65, 104104 (2002).

    Article  Google Scholar 

  23. S. Wang and H. Ye, Phys. Status Solidi B 240, 45 (2003).

    Article  CAS  Google Scholar 

  24. A. Bouhemadou and R. Khenata, Phys. Lett. A 362, 476 (2007).

    Article  CAS  Google Scholar 

  25. B. Mayer, H. Anton, E. Bott, M. Methfessel, J. Sticht, J. Harris, and P. Schmidt, Intermetallics 11, 23 (2003).

    Article  CAS  Google Scholar 

  26. A. Maachou, H. Aboura, B. Amrani, R. Khenata, S.B. Omran, and D. Varshney, Comput. Mater. Sci. 50, 3123 (2011).

    Article  CAS  Google Scholar 

  27. M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Oxford: Clarendon, 1954).

    Google Scholar 

  28. I. Shein and A. Ivanovskii, Solid State Commun. 151, 671 (2011).

    Article  CAS  Google Scholar 

  29. S. Pugh, Lond. Edinb. Dubl. Philos. Mag. J. Sci. 45, 823 (1954).

    Article  CAS  Google Scholar 

  30. A. Bouhemadou, D. Allali, S. Bin-Omran, E.M.A. Al Safi, R. Khenata, and Y. Al-Douri, Mater. Sci. Semicond. Process. 38, 192 (2015).

    Article  CAS  Google Scholar 

  31. S. Chibani, O. Arbouche, M. Zemouli, Y. Benallou, K. Amara, N. Chami, M. Ameri, and M. El Keurti, Comput. Condens. Matter 16, e00312 (2018).

    Article  Google Scholar 

  32. H.R. Aliabad, M. Ghazanfari, I. Ahmad, and M. Saeed, Comput. Mater. Sci. 65, 509 (2012).

    Article  Google Scholar 

  33. G.S. Nolas, J. Sharp, and J. Goldsmid, Thermoelectrics (Berlin: Springer, 2001).

    Book  Google Scholar 

  34. T. Takeuchi, Mater. Trans. 50, 2359 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. Chami, S. Chibani or M. Adjdir.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chami, N., Arbouche, O., Chibani, S. et al. Computational Prediction of Structural, Electronic, Elastic, and Thermoelectric Properties of FeVX (X = As, P) Half-Heusler Compounds. J. Electron. Mater. 49, 4916–4922 (2020). https://doi.org/10.1007/s11664-020-08225-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08225-4

Keywords

Navigation