Skip to main content
Log in

Enhanced Electrochemical Performance of Mn3O4/Multiwalled Carbon Nanotube Nanocomposite for Supercapacitor Applications

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Mn3O4/multiwalled carbon nanotube (MWCNT) nanocomposites were synthesized via a facile ultrasonic method, using manganese chloride as a precursor at room temperature for supercapacitor applications. The nanocomposites were characterized by powder x-ray diffraction (XRD), transmission electron microscopy (TEM) and field emission scanning electron microscopy (FE-SEM), respectively. TEM images revealed that the Mn3O4 nanoparticles were highly dispersed on the surface of the MWCNT. Cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopy (EIS) were performed for the Mn3O4/MWCNT nanocomposites using 1 M Na2SO4 aqueous solutions as the electrolyte in order to find the suitability of the material for supercapacitor applications. The electrochemical results exhibit improved performance for the Mn3O4/MWCNT composite electrode compared to pristine Mn3O4 nanoparticles owing to its structural superiority. The specific capacitance (Cs) of Mn3O4/MWCNT nanocomposites and pristine Mn3O4 was about 473 F g−1 and 259 F g−1 , respectively, at a current density of 1 A g−1. The Mn3O4/MWCNT composite sustains a very strong cyclic performance after 5000 cycles. The capacitance retention of the composite electrode shows highly stable performance confirming its suitability as lasting electrode material for supercapacitor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R. Kotz, and M. Carlen, Electrochim. Acta 45, 2483 (2000).

    Article  CAS  Google Scholar 

  2. V.D. Nithya, R.K. Selvan, L. Vasylechko, and C. Sanjeeviraja, J. Appl. Electrochem. 45, 473 (2015).

    Article  CAS  Google Scholar 

  3. J. Zhang, and X.S. Zhao, Chem. Sus. Chem. 5, 818 (2012).

    Article  CAS  Google Scholar 

  4. Y.G. Wang, H.Q. Li, and Y.Y. Xia, Adv. Mater. 18, 2619 (2006).

    Article  CAS  Google Scholar 

  5. S. Park, H.W. Shim, C.W. Lee, H.J. Song, J.C. Kim, and D.W. Kim, Nano Res. 9, 633 (2016).

    Article  CAS  Google Scholar 

  6. H. Xia, Y.S. Meng, G. Yuan, C. Cui, and L. Lu, Electrochem. Solid State Lett. 3, 60 (2012).

    Article  Google Scholar 

  7. W.J. Lu, S.Z. Huang, L. Miao, M.X. Liu, D.Z. Zhu, L.C. Li, H. Duan, Z.J. Xu, and L.H. Gan, Chin. Chem. Lett. 28, 1324 (2017).

    Article  CAS  Google Scholar 

  8. J. Jiang, and A. Kucernak, Electrochim. Acta 47, 2381 (2002).

    Article  CAS  Google Scholar 

  9. C.C. Hu, and T.W. Tsou, J. Power Sources 115, 179 (2003).

    Article  CAS  Google Scholar 

  10. L. Demarconnay, E. Raymndo-Pinero, and F. Béguin, J. Power Sources 196, 580 (2011).

    Article  CAS  Google Scholar 

  11. P. Wang, Y.J. Zhao, L.X. Wen, J.F. Chen, and Z.G. Lei, Ind. Eng. Chem. Res. 53, 20116 (2014).

    Article  CAS  Google Scholar 

  12. Q. Qu, P. Zhang, B. Wang, Y. Chen, S. Tian, Y. Wu, and R. Holze, J. Phys. Chem. C 113, 14020 (2009).

    Article  CAS  Google Scholar 

  13. A. Sliwak, A. Moyseowicz, and G. Gryglewicz, J. Mater. Chem. A 5, 5680 (2017).

    Article  CAS  Google Scholar 

  14. L.F. Chen, Z.H. Huang, H.W. Liang, Q.F. Guan, and S.H. Yu, Adv. Mater. 25, 4746 (2013).

    Article  CAS  Google Scholar 

  15. Z. Zhang, F. Xiao, L. Qian, J. Xiao, S. Wang, and Y. Liu, Adv. Energy Mater. 10, 1400064 (2014).

    Article  Google Scholar 

  16. R. Amade, E. Jover, B. Caglar, T. Mutlu, and E. Bertran, J. Power Sources 196, 5779 (2011).

    Article  CAS  Google Scholar 

  17. W.H. Low, P.S. Khiew, S.S. Lim, C.W. Siong, and E.R. Ezeigwe, J. Alloy. Compd. 775, 1324 (2019).

    Article  CAS  Google Scholar 

  18. Y. Haldorai, W. Voit, and J.J. Shim, Electrochim. Acta 120, 65 (2014).

    Article  CAS  Google Scholar 

  19. X. Cao, L. Ma, A. Tian, H. Zhang, M. Zheng, S. Liu, Q. Li, Y. You, F. Wang, L. Ma, and W. Shen, Int. J. Electrochem. Sci. 15, 1160 (2020).

    Article  CAS  Google Scholar 

  20. W. Wang, S. Guo, I. Lee, K. Ahmed, J. Zhong, Z. Favors, F. Zaera, M. Ozkan, and C.S. Ozkan, Sci. Rep. 4, 4452 (2014).

    Article  Google Scholar 

  21. Z. Niu, Y. Zhang, Y. Zhang, X. Lu, and J. Liu, J. Alloys Compd. 820, 153 (2020).

    Google Scholar 

  22. W.S. Li, M.L. Chang, K.C. Chuang, Y.S. Li, J.D. Luo, and H.C. Cheng, J. Electrochem. Soc. 166, A2194 (2019).

    Article  CAS  Google Scholar 

  23. D. Wang, Y. Li, Q. Wang, and T. Wang, Eur. J. Inorg. Chem. 4, 628 (2012).

    Article  Google Scholar 

  24. R. Ranjithkumar, S. Ezhil Arasi, N. Nallamuthu, P. Devendran, P. Lakshmanan, A. Arivarasan, and M. Krishna Kumar, Superlattices Microstruct. 138, 106 (2020).

  25. F. Li, J. Wu, Q. Qin, and X.H. Li, J. Alloys Compd. 492, 339 (2009).

    Article  Google Scholar 

  26. N. Hidayat, A. Taufiq, S. Sunaryono, S. Hidayat, H. Heriyanto, and E.B. Prayekti, J. Phys. Res. App. 8, 1 (2018).

    CAS  Google Scholar 

  27. S.B. Ma, K.Y. Ahn, E.S. Lee, K.H. Oh, and K.B. Kim, Carbon 45, 375 (2007).

    Article  CAS  Google Scholar 

  28. S. Li, L.L. Yu, Y.T. Shi, J. Fan, R.B. Li, G.D. Fan, W.L. Xu, and J.T. Zhao, ACS Appl. Mater. Interfaces 11, 10178 (2019).

    Article  CAS  Google Scholar 

  29. K. Sambath Kumar, J. Cherusseri, and J. Thomas, ACS Omega 4, 4472 (2019).

    Article  CAS  Google Scholar 

  30. V. Hiremath, M. Cho, and J.G. Seo, New J. Chem. 42, 19608 (2018).

    Article  CAS  Google Scholar 

  31. Z. Yihan, D. Wang, X. Yan, Y. Li, W. Zhou, X. Cheng, and B. Geng, Energy Fuels 11, 14924 (2020).

    Google Scholar 

  32. G. Bharath, N. Arora, A. Hai, F. Banat, D. Savariraj, H. Taher, and R.V. Mangalaraja, Electrochim. Acta 337, 135668 (2020).

    Article  CAS  Google Scholar 

  33. B.M. Chong, N.H. Azman, M.A. MohdAbdah, and Y. Sulaiman, Appl. Sci. 6, 1040 (2019).

    Article  Google Scholar 

  34. R.P. Camacho, A.M. Wu, S. Gao, X.Z. Jin, G.Z. Cao, and H. Huang, Mater. Today Chem. 12, 361 (2019).

    Article  Google Scholar 

  35. J. Shi, M. Sun, and H. Hu, Mater. Res. Express 6, 035511 (2018).

    Article  Google Scholar 

  36. B.K. Kuila, S.M. Zaeem, S. Daripa, K. Kaushik, S.K. Gupta, and S. Das, Mater. Res. Express 6, 015037 (2018).

    Article  Google Scholar 

  37. P. Nagaraju, M. Arivanandhan, A. Alsalme, A. Alghamdi, and R. Jayavel, RSC Adv. 10, 22836 (2020).

    Article  CAS  Google Scholar 

  38. Y. Dai, K. Wang, and J. Xie, Appl. Phys. Lett. 90, 104102 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Thennarasu.

Ethics declarations

Conflict of interest

“On behalf of all authors, the corresponding author states that there is no conflict of interest”.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abirami, R., Kabilan, R., Nagaraju, P. et al. Enhanced Electrochemical Performance of Mn3O4/Multiwalled Carbon Nanotube Nanocomposite for Supercapacitor Applications. J. Electron. Mater. 50, 6467–6474 (2021). https://doi.org/10.1007/s11664-021-09177-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09177-z

Keywords

Navigation