Skip to main content

Advertisement

Log in

Microwave Synthesis of Sn-Doped NiO/CNT Composites: The Effect of Sn Incorporation on Their Supercapacitive Properties

  • Original Research Aritcle
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Composites of metal oxide with carbonaceous materials have attracted researchers due to their high energy density and high power density. A series of tin (Sn) incorporated nickel oxide/carbon nanotube (NiO/CNT) composites are prepared by simple microwave irradiation. The chemical composition of prepared composites is analysed using various analytical techniques such as powder x-ray diffraction, micro-Raman spectroscopy, and x-ray photoelectron spectroscopy. Surface morphological studies of the composites revealed that the prepared composite has a uniform mixture of NiO nanoflakes with carbon nanotubes. Electrochemical studies of the composite electrodes in a three-electrode system demonstrate that 3% Sn-doped NiO/CNT composite has a higher specific capacitance of 238.2 F/g @ 5 mV/s scan rate than the specific capacitance of 231.8, 214.4 and 160.2 F/g @ 5 mV/s attained for 5%, 1% Sn-doped NiO/CNT and pristine NiO/CNT, respectively, in 2M potassium hydroxide (KOH) electrolyte. A high specific capacitance of 239.0 F/g @ 1 A/g current density is achieved for 3% Sn-doped NiO/CNT in galvanic discharge studies indicates that the prepared Sn-doped NiO/CNT is a suitable candidate for electrochemical supercapacitors.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K. Hansen, C. Breyer, and H. Lund, Energy 175, 471 (2019).

    Article  Google Scholar 

  2. J. Jurasz, F.A. Canales, A. Kies, M. Guezgouz, and A. Beluco, Sol. Energy 195, 703 (2020).

    Article  Google Scholar 

  3. D. Yoo, E. Markevich, G. Salitra, D. Sharon, and D. Aurbach, Mater. Today 17, 110 (2014).

    Article  CAS  Google Scholar 

  4. J.B. Goodenough, Energy Storage Mater. 1, 158 (2015).

    Article  Google Scholar 

  5. N. Khan, S. Dilshad, R. Khalid, A.R. Kalair, and N. Abas, Energy Storage 1, e49 (2019).

    Article  Google Scholar 

  6. M. Winter, and R.J. Brodd, Chem. Rev. 104, 4245 (2004).

    Article  CAS  Google Scholar 

  7. P. Simon, Y. Gogotsi, and B. Dunn, Science 343, 1210 (2014).

    Article  CAS  Google Scholar 

  8. Z. Yang, J. Tian, Z. Yin, C. Cui, W. Qian, and F. Wei, Carbon 141, 467 (2019).

    Article  CAS  Google Scholar 

  9. B.K. Saikia, S.M. Benoy, M. Bora, J. Tamuly, M. Pandey, and D. Bhattacharya, Fuel 282, 118796 (2020).

    Article  CAS  Google Scholar 

  10. T. Kesavan, T. Partheeban, M. Vivekanantha, M. Kundu, G. Maduraiveeran, and M. Sasidharan, Micropor. Mesopor. Mat. 274, 236 (2019).

    Article  CAS  Google Scholar 

  11. M. Karnan, S. Suresh Balaji, K. Subramani, A.G. Karthick Raj, V. Sannasi, and M. Sathish, J. Energy Storage 32, 101939 (2020).

    Article  Google Scholar 

  12. T. Tsubota, Y. Maguchi, K. Ishimoto, Y. Katamune, S. Kamimura, and T. Ohno, J. Electron. Mater. 48, 879 (2019).

    Article  CAS  Google Scholar 

  13. M. Ciszewski, A. Koszorek, T. Radko, P. Szatkowski, and D. Janas, J. Electron. Mater. 48, 717 (2019).

    Article  CAS  Google Scholar 

  14. V. Sannasi, and S. Karuppuchamy, Ceram. Int. 46, 15510 (2020).

    Article  CAS  Google Scholar 

  15. V. Sannasi, and S. Karuppuchamy, J. Mater. Sci. Mater. Electron. 31, 17120 (2020).

    Article  CAS  Google Scholar 

  16. R. DhilipKumar, and S. Karuppuchamy, Ceram. Int. 40, 12397 (2014).

    Article  CAS  Google Scholar 

  17. R. Dhilip, Y. Andou, and S. Karuppuchamy, J. Alloys Compd. 654, 349 (2016).

    Article  CAS  Google Scholar 

  18. V. Sannasi, and S. Karuppuchamy, Ceram. Int. 47, 12300 (2021).

    Article  CAS  Google Scholar 

  19. Y. Zhang, C. Sun, P. Lu, S. Song, and D. Xue, Crys. Eng. Comm. 14, 5892 (2012).

    Article  CAS  Google Scholar 

  20. R. Arunachalam, R.K.V. Prataap, R. PavulRaj, S. Mohan, J. Vijayakumar, L. Péter, and M.A. Ahmad, Surf. Eng. 35, 102 (2019).

    Article  CAS  Google Scholar 

  21. W.G. Nunes, L.M.D. Silva, R. Vicentini, B.G. Freitas, L.H. Costa, A.M. Pascon, and H. Zanin, Electrochim. Acta 298, 468 (2019).

    Article  CAS  Google Scholar 

  22. S. Kumar, G. Saeed, L. Zhu, K.N. Hui, N.H. Kim, and J.H. Lee, Chem. Eng. J. 403, 126352 (2021).

    Article  CAS  Google Scholar 

  23. S.-W. Zhang, B.-S. Yin, X.-X. Liu, D.-M. Gu, H. Gong, and Z.-B. Wang, Nano Energy 59, 41 (2019).

    Article  CAS  Google Scholar 

  24. V. Venkatachalam, and R. Jeyavel, J. Electron. Mater. 49, 3174 (2020).

    Article  CAS  Google Scholar 

  25. X. Chen, T. Shi, K. Zhong, G. Wu, and Y. Lu, Chem. Eng. J. 379, 122240 (2020).

    Article  CAS  Google Scholar 

  26. S. Fleischmann, A. Tolosa, and V. Presser, Chem. Eur. J. 24, 12143 (2018).

    Article  CAS  Google Scholar 

  27. A. Muhammad, Z. Sonia, S. Muhammad, H. Sajjad, S. Imran, and F.W. Muhammad, J. Alloys Compd. 844, 156062 (2020).

    Article  CAS  Google Scholar 

  28. Z. Wu, D. Khalafallah, C. Teng, X. Wang, Q. Zou, J. Chen, M. Zhi, and Z. Hong, J. Alloys Compd. 838, 155604 (2020).

    Article  CAS  Google Scholar 

  29. S. Suthakaran, S. Dhanapandian, N. Krishnakumar, and N. Ponpandian, J. Phys. Chem. Solids 141, 109407 (2020).

    Article  CAS  Google Scholar 

  30. H. Xiao, S. Yao, H. Liu, F. Qu, X. Zhang, and X. Wu, Prog. Nat. Sci.: Mater. Int. 26, 271 (2016).

    Article  CAS  Google Scholar 

  31. V.E. Gurenko, V.I. Popkov, and A.A. Lobinsky, Mater. Lett. 279, 128478 (2020).

    Article  CAS  Google Scholar 

  32. F. Yang, K. Zhang, W. Li, and K. Xu, J. Colloid Interface Sci. 556, 386 (2019).

    Article  CAS  Google Scholar 

  33. D. Han, X. Jing, J. Wang, P. Yang, D. Song, and J. Liu, J. Electroanal. Chem. 682, 37 (2012).

    Article  CAS  Google Scholar 

  34. P.E. Saranya, and S. Selladurai, New J. Chem. 43, 7441 (2019).

    Article  CAS  Google Scholar 

  35. G. Yuan, Y. Liu, M. Yue, H. Li, E. Liu, Y. Huang, and D. Kong, Ceram. Int. 40, 9101 (2014).

    Article  CAS  Google Scholar 

  36. S. Hussain, P. Wan, N. Aslam, G. Qiao, G. Liu, and M. Wang, J. Mater. Sci. Mater. Electron. 29, 1759 (2018).

    Article  CAS  Google Scholar 

  37. K. Sathiskumar, N. Shanmugam, N. Kannadasan, C. Cholan, and G. Viruthagiri, J. Sol-Gel Sci. Technol. 74, 621 (2015).

    Article  CAS  Google Scholar 

  38. K. Indu, A.K. Sharma, S. Priya, V. Kumar, and D. Surrender, Carbon Lett. 29, 69 (2019).

    Article  Google Scholar 

  39. B. Lin, S. Huang, C. Ye, Q. Qin, J. Yan, and Y. Wu, J. Alloys Compd. 788, 302 (2019).

    Article  CAS  Google Scholar 

  40. P. Samanta, S. Ghosh, P. Samanta, N.C. Murmu, and T. Kuila, J. Energy Storage 28, 101281 (2020).

    Article  Google Scholar 

  41. Y. Zhou, Y. Wang, J. Wang, L. Lin, X. Wu, and D. He, Mater. Lett. 216, 248 (2018).

    Article  CAS  Google Scholar 

  42. Y. Zhao, W. Ran, D.-B. Xiong, L. Zhang, J. Xu, and F. Gao, Mater. Lett. 118, 80 (2014).

    Article  CAS  Google Scholar 

  43. D. Shanbhag, K. Bindu, A.R. Aarathy, M. Ramesh, M. Sreejesh, and H.S. Nagaraja, Mater. Today Energy 4, 66 (2017).

    Article  Google Scholar 

  44. P. Lin, Q. She, B. Hong, X. Liu, Y. Shi, Z. Shi, M. Zheng, and Q. Dong, J. Electrochem. Soc. 157, A818 (2010).

    Article  CAS  Google Scholar 

  45. A. Roy, A. Ray, S. Saha, M. Ghosh, T. Das, B. Satpati, M. Nandi, and S. Das, Electrochim. Acta 283, 327 (2018).

    Article  CAS  Google Scholar 

  46. L. Yu, G. Wang, G. Wan, G. Wang, S. Lin, X. Li, K. Wang, Z. Bai, and Y. Xiang, Dalton Trans. 45, 13779 (2016).

    Article  CAS  Google Scholar 

  47. J. Xu, L. Wu, Y. Liu, J. Zhang, J. Liu, S. Shu, X. Kang, Q. Song, D. Liu, F. Huang, and Y. Hu, Surf. Interfaces 18, 100420 (2020).

    Article  CAS  Google Scholar 

  48. A.G. Vidales, D. Sridhar, J.-L. Meunier, and S. Omanovic, J. Appl. Electrochem. 50, 1217 (2020).

    Article  CAS  Google Scholar 

  49. V. Sannasi, K. Uma Maheswari, C. Karthikeyan, and S. Karuppuchamy, Ionics 26, 4067 (2010).

    Article  CAS  Google Scholar 

  50. H.M. Yadav, S. Ramesh, K. AshokKumar, S. Shinde, S. Sandhu, A. Sivasamy, N.K. Shrestha, H.S. Kim, H.-S. Kim, and C. Bathula, Polym. Test 89, 106727 (2020).

    Article  CAS  Google Scholar 

  51. M.-U. Nina, A. Kuzmin, I. Sildos, and M. Pars, Cent. Eur. J. Phys. 9, 1096 (2011).

    Google Scholar 

  52. J. Liu, T. Xu, X. Sun, J. Bai, and C. Li, J. Alloys Compd. 807, 151652 (2019).

    Article  CAS  Google Scholar 

  53. Y. Wang, Y. Song, and Y. Xia, Chem. Soc. Rev. 45, 5925 (2016).

    Article  CAS  Google Scholar 

  54. P. Navalpotro, M. Anderson, R. Marcilla, and J. Palma, Electrochim. Acta 263, 110 (2018).

    Article  CAS  Google Scholar 

  55. M. Layegh, F.E. Ghodsi, and H. Hadipour, J. Phys. Chem. Solids 121, 375 (2018).

    Article  CAS  Google Scholar 

  56. J.Y. Lee, K. Liang, K.H. An, and Y.H. Lee, Synth. Met. 150, 153 (2005).

    Article  CAS  Google Scholar 

  57. Y. Zheng, M. Zhang, and P. Gao, Mater. Res. Bull. 42, 1740 (2007).

    Article  CAS  Google Scholar 

  58. U.M. Patil, R.R. Salunkhe, K.V. Gurav, and C.D. Lokhande, Appl. Surf. Sci. 255, 2603 (2008).

    Article  CAS  Google Scholar 

  59. Y.-Z. Zheng, H.-Y. Ding, and M.-L. Zhang, Mater. Res. Bull. 44, 403 (2009).

    Article  CAS  Google Scholar 

  60. H.-Y. Chang, H.-C. Chang, and K.-Y. Lee, Vacuum 87, 164 (2013).

    Article  CAS  Google Scholar 

  61. J. Xu, L. Li, F. He, R. Lv, and P. Yang, Electrochim. Acta 148, 211 (2014).

    Article  CAS  Google Scholar 

  62. H. Xiao, S. Yao, H. Liu, F. Qu, X. Zhang, and X. Wu, Prog. Nat. Sci. Mater. Int. 26, 271 (2016).

    Article  CAS  Google Scholar 

  63. N. Iqbal, X. Wang, A.A. Babar, J. Yu, and B. Ding, J. Colloid Interface Sci. 476, 87 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Dr. V. Sannasi gratefully acknowledges the Council of Scientific and Industrial Research (CSIR), Government of India, for providing CSIR-RA. The authors express their sincere thanks to MHRD-RUSA, Government of India, and the Ministry of Higher Education, Government of Tamil Nadu, RUSA R&I-Phase-I component 8.0 and RUSA- Phase 2.0 grant sanctioned vide Letter No. F.24-51 / 2014-U, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Karuppuchamy.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sannasi, V., Maheswari, M., Ramachandran, K. et al. Microwave Synthesis of Sn-Doped NiO/CNT Composites: The Effect of Sn Incorporation on Their Supercapacitive Properties. J. Electron. Mater. 50, 6102–6113 (2021). https://doi.org/10.1007/s11664-021-09128-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09128-8

Keywords

Navigation