Skip to main content

Advertisement

Log in

1D/2D Co3O4/Graphene Composite Electrodes for High-Performance Supercapacitor Applications

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Nanostructured Co3O4/reduced graphene oxide (rGO) composite material has been synthesized by a hydrothermal method. Urea was used as a structure-directing and assembling agent for Co3O4 nanorods. The structure and morphology of the as-synthesized Co3O4/rGO composite were investigated by x-ray diffraction analysis, scanning electron microscopy, and high-resolution transmission electron microscopy. Fourier-transform infrared spectroscopy analysis confirmed successful reduction of rGO and formation of the composite. Qualitative Raman spectral analysis of GO and the Co3O4/rGO composite revealed the reestablishment of an sp2-conjugated network of carbon atoms after reduction of graphene. Electrochemical analysis disclosed the pseudocapacitive behavior of the composite electrode material. The specific capacitance of the composite electrode was calculated to reach a higher value of 916.6 F g−1 at 0.5 A g−1 in 1 M KOH electrolyte, with excellent rate capability and long-term stability including 98% capacitance retention after 1000 cycles. This outstanding capacitive performance makes the Co3O4/rGO hybrid nanocomposite a promising candidate for use in supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.F. Chen and D.F. Xue, CrystEngComm 19, 1230 (2017).

    CAS  Google Scholar 

  2. K.F. Chen and D.F. Xue, J. Mater. Chem. A 4, 7522 (2016).

    CAS  Google Scholar 

  3. K.F. Chen, S. Song, F. Liu, and D.F. Xue, Chem. Soc. Rev. 44, 6230 (2015).

    CAS  Google Scholar 

  4. S. Khamlich, Z. Abdullaeva, J. Kennedy, and M. Maaza, Appl. Surf. Sci. 405, 329 (2017).

    CAS  Google Scholar 

  5. K. Kaviyarasu, E. Manikandan, J. Kennedy, M. Jayachandran, R. Ladchumananandasiivam, U.U. Gomes, and M. Maaza, Ceram. Int. 42, 8385 (2016).

    CAS  Google Scholar 

  6. A.M. Amanulla, S.K. Jasmine Shahina, R. Sundaram, C.M. Magdalane, K. Kaviyarasu, D. Letsholathebe, S.B. Mohamed, J. Kennedy, and M. Maaza, J. Photochem. Photobiol. B 183, 233 (2018).

    Google Scholar 

  7. J. Kennedy, F. Fang, J. Futter, J. Leveneura, P.P. Murmu, G.N. Panin, T.W. Kang, and E. Manikandan, Diam. Relat. Mater. 71, 79 (2017).

    CAS  Google Scholar 

  8. V.H. Nguyen and J.J. Shim, Mater. Lett. 139, 377 (2015).

    Google Scholar 

  9. M.J. Deng, F.L. Huang, I.W. Sun, W.T. Tsai, and J.K. Chang, Nanotechnology 20, 175602 (2009).

    Google Scholar 

  10. C.T. Sun and D.F. Xue, Sci. China Technol. Sci. 62, 707 (2019).

    Google Scholar 

  11. K.F. Chen and D.F. Xue, Sci. China Technol. Sci. 58, 1768 (2015).

    CAS  Google Scholar 

  12. F. Liu and D.F. Xue, Sci. China Technol. Sci. 58, 1841 (2015).

    CAS  Google Scholar 

  13. C. Sun, K. Li, and D.F. Xue, J. Rare Earth 37, 1 (2019).

    CAS  Google Scholar 

  14. K.F. Chen and D.F. Xue, Mater. Res. Bull. 96, 281 (2017).

    CAS  Google Scholar 

  15. D.F. Xue, C. Sun, and X. Chen, J. Rare Earth 35, 837 (2017).

    CAS  Google Scholar 

  16. K.F. Chen and D.F. Xue, Mater. Res. Bull. 83, 201 (2016).

    CAS  Google Scholar 

  17. W.F. Zhang, F. Liu, Q.Q. Li, Q.L. Shou, J.P. Cheng, L. Zhang, B.J. Nelson, and X.B. Zhang, Phys. Chem. Chem. Phys. 14, 16331 (2012).

    CAS  Google Scholar 

  18. S. Huang, Y.H. Jin, and M.Q. Jia, Electrochim. Acta 95, 139 (2013).

    Google Scholar 

  19. K. Satheesh and R. Jayavel, Mater. Lett. 113, 5 (2013).

    CAS  Google Scholar 

  20. V. Venkatachalam, A. Alsalme, A. Alswieleh, and R. Jayavel, J. Mater. Sci. Mater. Electron. 29, 6059 (2018).

    CAS  Google Scholar 

  21. G. He, L. Wang, H. Chen, X. Sun, and X. Wang, Mater. Lett. 98, 164 (2013).

    CAS  Google Scholar 

  22. X.J. Zhu, J. Hu, H.L. Dai, L. Ding, and L. Jiang, Electrochim. Acta 64, 23 (2012).

    CAS  Google Scholar 

  23. J. Xie, H. Cao, H. Jiang, Y. Chen, W. Shi, H. Zheng, and H. Yuming, Anal. Chim. Acta 796, 92 (2013).

    CAS  Google Scholar 

  24. X. Lia, S. Yang, J. Sun, P. He, X. Pu, and D. Guqiao, Synth. Met. 194, 52 (2014).

    Google Scholar 

  25. D. Zhang and W. Zou, Curr. Appl. Phys. 13, 1796 (2013).

    Google Scholar 

  26. H.W. Wang, Z.A. Hu, Y.Q. Chang, Y.L. Chen, Z.Y. Zhang, Y.Y. Yang, and H.Y. Wu, Mater. Chem. Phys. 130, 672 (2011).

    CAS  Google Scholar 

  27. M. Zhang, M. Jia, Y. Jin, Q. Wen, and C. Chen, J. Alloys Compd. 566, 131 (2013).

    CAS  Google Scholar 

  28. Y. Ting, Z. Yanwu, X. Xiaojing, S. Zexiang, C. Ping, C.T. Lim, J.T. Thong, and C.H. Sow, Adv. Mater. 17, 1595 (2005).

    Google Scholar 

  29. S. Haoxia, Z. Yujuan, L. Wei, Z. Song, L. Guichang, C. Huiying, and Q. Jieshan, Electrochim. Acta 112, 120 (2013).

    Google Scholar 

  30. L.J. Xie, J.F. Wu, C.M. Chen, C.M. Zhang, L. Wan, J.L. Wang, Q.Q. Kong, C.X. Lv, K.X. Li, and G.H. Sun, J. Power Sources 242, 148 (2013).

    CAS  Google Scholar 

  31. V. Venkatachalam, A. Alsalme, A. Alswieleh, and R. Jayavel, Chem. Eng. J. 321, 474 (2017).

    CAS  Google Scholar 

  32. V. Venkatachalam, A. Alsalme, A. Alghamdi, and R. Jayavel, Ionics 23, 977 (2017).

    CAS  Google Scholar 

  33. V. Venkatachalam, A. Alsalme, A. Alghamdi, and R. Jayavel, J. Electroanal. Chem. 756, 94 (2015).

    CAS  Google Scholar 

  34. S. Jana, N. Singh, A.S. Bhattacharyya, and G.P. Singh, J. Mater. Eng. Perform. 27, 2741 (2018).

    CAS  Google Scholar 

  35. G. Lin, Y. Jiang, C. He, Z. Huang, X. Zhang, and Y. Yang, Dalton Trans. 48, 5773 (2019).

    CAS  Google Scholar 

  36. L. Jiang, Y. Li, D. Luo, Q. Zhang, F.G. Cai, G.J. Wan, L. Xiong, and Z.F. Ren, Energy Technol. 7, 1800606 (2019). https://doi.org/10.1002/ente.201800606.

    Article  CAS  Google Scholar 

  37. S. Park and S. Kim, Electrochim. Acta 89, 516 (2013).

    CAS  Google Scholar 

  38. G. He, J. Li, H. Chen, J. Shi, X. Sun, S. Chen, and X. Wang, Mater. Lett. 82, 61 (2012).

    CAS  Google Scholar 

  39. M. Srivastava, M.E. Uddin, J. Singh, N.H. Kim, and J.H. Lee, J. Alloys Compd. 590, 266 (2014).

    CAS  Google Scholar 

  40. T. Hu, G. Xin, H. Sun, X. Sun, M. Yu, C. Liu, and J. Lian, RSC Adv. 4, 1521 (2014).

    CAS  Google Scholar 

  41. Z. Li, T. Chang, G. Yun, J. Guo, and B. Yang, J. Alloys Compd. 586, 353 (2014).

    CAS  Google Scholar 

  42. C.H. Lai, C.K. Lin, S.W. Lee, H.Y. Li, J.K. Chang, and M.J. Deng, J. Alloys Compd. 536, S428 (2012).

    CAS  Google Scholar 

Download references

Funding

This study was not funded.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Venkatachalam.

Ethics declarations

Conflict of interest

The authors declared that there are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkatachalam, V., Jayavel, R. 1D/2D Co3O4/Graphene Composite Electrodes for High-Performance Supercapacitor Applications. J. Electron. Mater. 49, 3174–3181 (2020). https://doi.org/10.1007/s11664-020-08049-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08049-2

Keywords

Navigation