Skip to main content
Log in

Effects of Grain Size on the Ag Dissolution and Ion Migration of Ag-4Pd Alloy Wires

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Ion migration and corrosion behavior in Ag-4Pd alloy wires with fine and coarse grains in the outer regions were evaluated with water drop tests. The results from the in situ observations and measurements of Ag ion migration in both Ag-4Pd bonding wires indicated that the fine-grained wire had much shorter times of dendrite contact and short circuit than those of coarse-grained wire for various wire spaces. It was obvious that grain refinement in Ag-4Pd alloy wires accelerated the ion migration of Ag-4Pd alloy wires. Electrochemical polarization tests confirmed that the passive film on fine-grained Ag-4Pd wire was easily broken down, leading to a higher Ag dissolution tendency than that of coarse-grained wire. Although an annealing twin-rich Ag-4Pd alloy wire was shown to enhance the thermal stability of the grain structure and mechanical properties, the large number of twins had no influence on the formation of Ag dendrites on the cathode and Ag2O oxide on the anode of the coarse-grained Ag-4Pd wire couple during ion migration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. M.K. Chung, Y.S. Choi, J.G. Kim, Y.M. Kim, and J.C. Lee, Mater. Sci. Eng. A 366, 282 (2004).

    Article  Google Scholar 

  2. R.J. Hellmig, M. Janecek, B. Hadzima, O.V. Gendelman, M. Shapiro, X. Molodova, A. Springer, and Y. Estrin, Mater. Trans. 49, 31 (2008).

    Article  CAS  Google Scholar 

  3. M. Niikura, M. Fujioka, Y. Adachi, A. Matsukura, T. Yokota, Y. Shirota, and Y. Hagiwara, J., Mater. Process. Technol. 117, 341 (2001).

  4. K.D. Ralston, and N. Birbilis, Corrosion 66, 075005–075013 (2010).

    Article  Google Scholar 

  5. W.R. Osorio, C.M. Freire, and A. Garcia, Mater. Sci. Eng. A 402, 22 (2005).

    Article  Google Scholar 

  6. R. Ambat, N.N. Aung, and W. Zhou, Corros. Sci. 42, 1433 (2000).

    Article  CAS  Google Scholar 

  7. S. Tao, and D.Y. Li, Nanotechnology 17, 65 (2006).

    Article  CAS  Google Scholar 

  8. G. Ben Hamu, D. Eliezer, and L. Wagner, J. Alloys Compd. 468, 222 (2009).

  9. G. Ben Hamu, D. Eliezer, and C.E. Cross, Mater. Sci. Eng. A 452, 210 (2007).

  10. S. J. Krumbein, IEEE Trans. Components, Hybrids Manuf. Technol. 11, 5 (1988).

  11. J. Kim, and S.D. Park, Eng. Fail. Anal. 28, 252 (2013).

    Article  CAS  Google Scholar 

  12. P. Bojta, P. Nemeth, and G. Harsanyi, Microelectron. Reliabili. Microelectron. Reliabili. 42, 1213 (2002).

    Article  Google Scholar 

  13. M. Chen, X. Shan, T. Geske, J. Li, and Z. Yu, ACS Nano 11, 6312 (2017).

    Article  CAS  Google Scholar 

  14. C.H. Tsai, C.H. Chuang, H.H. Tsai, J.D. Lee, Dennis Chang, H.J. Lin, and T.H. Chuang, IEEE Trans. Compon. Packaging Manuf. Technol. 6, 298 (2016).

  15. T.H. Chuang, C.C. Chang, C.H. Chuang, J.D. Lee, and H.H. Tsai, IEEE Trans. Compon. Packaging Manuf. Technol. 3, 3 (2013).

    Article  CAS  Google Scholar 

  16. T.H. Chuang, H.C. Wang, C.H. Chuang, H.J. Lin, J.D. Lee, and T.H. Chuang, Metall. Mater. Trans. A 44, 5106 (2013).

    Article  CAS  Google Scholar 

  17. T.H. Chuang, H.J. Lin, C.H. Chuang, Y.Y. Shiue, F.S. Shieu, Y.L. Huang, P.C. Hsu, J.D. Lee, and H.H. Tsai, J. Alloys Compd. 615, 891 (2014).

    Article  CAS  Google Scholar 

  18. C.H. Chuang, Y.C. Lin, Y.Z. He, C.H. Tsai, J.D. Lee, S.C. Wang, and H.H. Tsai, Mater. Sci. Forum, Mater. Sci. Forum 863, 95 (2016).

  19. Y.C. Lin, C.H. Chen, Y.Z. He, S.C. Chen, and T.H. Chuang, J. Electronic Mater. 47, 3634 (2018).

    Article  CAS  Google Scholar 

  20. C.H. Chen, Y.C. Lin, Y.T. Shih, S.C. Chen, C.H. Tsai, S.C. Wang, and T.H. Chuang, Evaluation of corrosion resistance of Ag-alloy bonding wires for electronic packaging IEEE Trans. Compon. Packaging Manuf. Technol. 8, 146 (2018).

    Article  CAS  Google Scholar 

  21. Kim. Vu, Silver migration–The mechanism and effects on thick-film conductors. (CiteSeerX, 2003), http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.516.6359, Accessed 26 June 2021.

  22. ASTM F1996-01, Standard test method for silver migration for membrane switch circuitry, 1996.

Download references

Acknowledgments

This study was sponsored by the industrial and academic cooperation program of Wire Technology Co., LTD. and the Ministry of Science and Technology, Taiwan, under Grant No. MOST 108-2622-E002-009-CC2, and by the Hsinchu Science Park R & D program of Ag Materials Technology Co., LTD. and the Ministry of Science and Technology, Taiwan, under Grant No. 109A18A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tung-Han Chuang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, YC., Lee, PI., Wu, PC. et al. Effects of Grain Size on the Ag Dissolution and Ion Migration of Ag-4Pd Alloy Wires. J. Electron. Mater. 50, 5955–5964 (2021). https://doi.org/10.1007/s11664-021-09119-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09119-9

Keywords

Navigation