Skip to main content
Log in

Formation of Ag Dendrites During the Electrolytic Migration Between Ag-4Pd Wire Couple in Water Under Bias

  • Advanced Technology for Electronic Packaging and Interconnection Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The growth of Ag dendrites induced by the Ag ion migration between Ag-4Pd alloy wire couples immersed in pure water under bias was observed, and its failure mode leading to a short circuit was investigated. The experimental results indicated that the time of dendrite contact and short circuit decreased obviously with increases in voltage and wire pitch. In contrast, the formation time of hydrogen bubbles and Ag spikes in the initial stage of water drop tests decreased slightly with increases in applied voltage, leading to drastic increases in the Ag dendrite growth rate at higher voltages. During the electrolytic migration process, the outer surface of the anode wire oxidized into a continuous Ag2O layer with a porous grain structure. In addition, Ag+ ions were reduced to crystallographic Ag2O particles that formed a layer concealing the anode wire. Summarizing the observations of Ag dendrite growth and the Ag2O layer formed on cathode and anode wires, respectively, a reaction mechanism for the electrolytic migration of Ag-4Pd wire couple is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S. Krumbein, and I.E.E.E. Trans, Compon. Hybrids Manuf. Technol. 11, 5 https://doi.org/10.1109/33.2957 (1988).

    Article  Google Scholar 

  2. A. Shumka and R.R. Piety, Migrated-gold resistive shorts in microcircuits. Paper presented at the 13th International Reliability Physics Symposium, Las Vegas, NV, USA, 01–03 April 1975. https://doi.org/10.1109/IRPS.1975.362681.

  3. J.H. Kim, and S.-D. Park, Eng. Fail. Anal. 28, 252 https://doi.org/10.1016/j.engfailanal.2012.10.019 (2013).

    Article  Google Scholar 

  4. P. Bojta, P. Németh, and G. Harsânyi, Microelectron. Reliab. 42, 1213 https://doi.org/10.1016/S0026-2714(02)00083-5 (2002).

    Article  Google Scholar 

  5. M. Chen, X. Shan, T. Geske, J. Li, and Z. Yu, ACS Nano 11, 6312 https://doi.org/10.1021/acsnano.7b02629 (2017).

    Article  Google Scholar 

  6. S. Yang, J. Wu, and A. Christou, Microelectron. Reliab. 46, 1915 https://doi.org/10.1016/j.microrel.2006.07.080 (2006).

    Article  Google Scholar 

  7. B.I. Noh, J.B. Lee, and S.B. Jung, Microelectron. Reliab. 48, 652 https://doi.org/10.1016/j.microrel.2007.09.006 (2008).

    Article  Google Scholar 

  8. G. Ripka, and G. Harsanyi, Electrocompon. Sci. Technol. 11, 281 https://doi.org/10.1155/APEC.11.281 (1985).

    Article  Google Scholar 

  9. H.-H. Tsai, T.-H. Chuang, J.-D. Lee, C.-H. Tsai, H.-C. Wang, H.-J. Lin, and C.-C. Chang, High performance Ag-Pd alloy wires for high frequency IC packages. Paper presented at the 2013 8th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), Taipei, Taiwan, 22–25 October 2013. https://doi.org/10.1109/IMPACT.2013.6706697

  10. C.-H. Tsai, C.-H. Chuang, H.-H. Tsai, J.-D. Lee, D. Chang, H.-J. Lin, and T.-H. Chuang, IEEE Trans. Compon. Packag. Manuf. Technol. 6, 298 https://doi.org/10.1109/TCPMT.2015.2453410 (2016).

    Article  Google Scholar 

  11. J.-H. Yuan, and T.-H. Chuang, IEEE Trans. Compon. Packag. Manuf. Technol. 10, 191 https://doi.org/10.1109/TCPMT.2020.2964025 (2020).

    Article  Google Scholar 

  12. J.H. Yuan, and T.H. Chuang, Mater. Sci. Forum 960, 221 https://doi.org/10.4028/www.scientific.net/MSF.960.221 (2019).

    Article  Google Scholar 

  13. C.H. Chuang, Y.C. Lin, Y.Z. He, C.H. Tsai, J.D. Lee, S.C. Wang, and H.H. Tsai, Mater. Sci. Forum 863, 95 https://doi.org/10.4028/www.scientific.net/MSF.863.95 (2016).

    Article  Google Scholar 

  14. H. Naguib, and B. MacLaurin, IEEE Trans. Compon. Hybrids Manuf. Technol. 2, 196 https://doi.org/10.1109/TCHMT.1979.1135444 (1979).

    Article  Google Scholar 

  15. J. Lin, and J. Chuang, J. Electrochem. Soc. 144, 1652 (1997).

    Article  Google Scholar 

  16. J.C. Lin, and J.Y. Chan, Mater. Chem. Phys. 43, 256 https://doi.org/10.1016/0254-0584(95)01642-8 (1996).

    Article  Google Scholar 

  17. J. Gagne, and I.E.E.E. Trans, Compon. Hybrids Manuf. Technol. 5, 402 https://doi.org/10.1109/TCHMT.1982.1135983 (1982).

    Article  Google Scholar 

  18. Y.C. Lin, C.H. Chen, Y.Z. He, S.C. Chen, and T.H. Chuang, J. Electron. Mater. 47, 3634 https://doi.org/10.1007/s11664-018-6210-0 (2018).

    Article  Google Scholar 

  19. T.H. Chuang, P.I. Lee, and Y.C. Lin, IEEE Trans. Compon. Packag. Manuf. Technol. 10, 1989 https://doi.org/10.1109/TCPMT.2020.3034213 (2020).

    Article  Google Scholar 

  20. K. Vu, “Silver migration–The mechanism and effects on thick-film conductors”, Mater. Sci. Eng. 234, College of Engineering, San Jose State University, California, 1 (2003), https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.516.6359&rep=rep1&type=pdf. Accessed 16 June 2022.

  21. ASTM Standard F1996-01, "Standard Test Method for Silver Migration for Membrane Switch Circuitry," ASTM International, West Conshohocken, PA, 1996, https://doi.org/10.1520/F1996-01.www.astm.org.

  22. R. Meyer, and L.J. Lewis, Phys. Rev. B 66, 052106 https://doi.org/10.1103/PhysRevB.66.052106 (2002).

    Article  Google Scholar 

  23. C.H. Chen, P.I. Lee, and T.H. Chuang, J. Alloys Compd. 913, 165266 https://doi.org/10.1016/j.jallcom.2022.165266 (2022).

    Article  Google Scholar 

  24. Y.-C. Lin, P.-I. Lee, P.-C. Wu, C.-H. Chen, and T.-H. Chuang, J. Electron. Mater. 50, 5955 https://doi.org/10.1007/s11664-021-09119-9 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

This study was sponsored by the industrial and academic cooperation program of Wire Technology Co. and the Ministry of Science and Technology, Taiwan, under Grant No. MOST 105-2622-E002-031-CC2 and the Postdoctoral Research Abroad Program from Ministry of Science and Technology, Taiwan, under Grant No. 110-2917-I-564-028.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tung-Han Chuang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, CH., Lin, YC., Wu, PC. et al. Formation of Ag Dendrites During the Electrolytic Migration Between Ag-4Pd Wire Couple in Water Under Bias. JOM 75, 1880–1888 (2023). https://doi.org/10.1007/s11837-023-05700-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05700-1

Navigation