Skip to main content
Log in

Au-induced improvements in the grain stability and mechanical properties of Ag-based alloy wires under electrical current stressing

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The evolutions of the surface morphologies, cross-sectional microstructures, and mechanical properties of two types of Ag-based alloy wires with different Au contents under a 105 A/cm2 electrical current density across various times were compared in this study. Ag-based alloy wires that contain 8 wt% Au and 15 wt% Au with 3 wt% Pd were produced via rapid drawing and multiple annealing processes to replace commercial Au-bonded wires in the electronic packaging industry. The surface morphologies of these wires were revealed by scanning electron microscopy (SEM), and cross-sectional microstructures were analyzed by electron back scattering diffraction (EBSD). The SEM observations showed grain- and step-like structures in the Ag–8Au–3Pd and Ag–15Au–3Pd wires after a 5-h treatment, respectively. EBSD results revealed a change in the main preferred orientation from <001> slender grains to <111> equiaxed grains because the high-angle grain boundaries (HAGB) were reduced, and the twin boundaries (TB) were multiplied along the drawing direction. In terms of mechanical properties, Ag–15Au–3Pd wire showed better breaking loads and elongations than Ag–8Au–3Pd wire. The Au effect in Ag-based alloy wires reduced the atomic diffusion to stabilize grain structures and induce a dislocation accumulation, which subsequently improved the mechanical properties by retaining and forming HAGBs, LAGBs, and TBs under high current stressing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. P.B. Ghate, Electromigration-induced failures in VLSI interconnects. IEEE Int. Reliab. Phys. Symp. Proc. 20, 292–299 (1982)

    Article  Google Scholar 

  2. J.R. Black, Electromigration failure modes in aluminum metallization for semiconductor devices. Proc. IEEE 57, 1587–1594 (1969)

    Article  Google Scholar 

  3. H.B. Huntington, A.R. Grone, Current-induced marker motion in gold wires. J. Phys. Chem. Solids 20, 76–87 (1961)

    Article  Google Scholar 

  4. J.A. Nucci, A. Straub, E. Bischoff, E. Arzt, C.A. Volkert, Growth of electromigration-induced hillocks in Al interconnects. J. Mater. Res. 17, 2727–2735 (2002)

    Article  Google Scholar 

  5. T. Marieb, P. Flinn, J.C. Bravman, D. Gardner, M. Madden, Observations of electromigration induced void nucleation and growth in polycrystalline and near-bamboo passivated Al lines. J. Appl. Phys. 78, 1026–1032 (1995)

    Article  Google Scholar 

  6. R. Spolenak, O. Kraft, E. Arzt, Effects of alloying elements on electromigration. Microelectron. Reliab. 38, 1015–1020 (1998)

    Article  Google Scholar 

  7. F. d’Heurle, The effect of copper additions on electromigration in aluminum thin films. Metall. Trans. 2, 683–689 (1971)

    Article  Google Scholar 

  8. T.H. Chuang, H.J. Lin, C.H. Chuang, Y.Y. Shiue, F.S. Shieu, Y.L. Huang, P.C. Hsu, J.D. Lee, H.H. Tsai, Thermal stability of grain structure and material properties in an annealing twinned Ag–4Pd alloy wire. J. Alloys Compd. 615, 891–898 (2014)

    Article  Google Scholar 

  9. T.H. Chuang, H.C. Wang, C.H. Tsai, C.C. Chang, C.H. Chuang, J.D. Lee, H.H. Tsai, Thermal stability of grain structure and material properties in an annealing-twinned Ag–8Au–3Pd alloy wire. Scr. Mater. 67, 605–608 (2012)

    Article  Google Scholar 

  10. R. Guo, L. Gao, M. Li, D. Mao, K. Qian, H. Chiu, Microstructure evolution of Ag–8Au–3Pd alloy wire during electromigration. Mater. Charact. 110, 44–51 (2015)

    Article  Google Scholar 

  11. K.C. Chen, C.N. Liao, W.W. Wu, L.J. Chen, Direct observation of electromigration-induced surface atomic steps in Cu lines by in situ transmission electron microscopy. Appl. Phys. Lett. 90, 203101 (2007)

    Article  Google Scholar 

  12. L. Lu, Y. Shen, X. Chen, L. Qian, K. Lu, Ultrahigh strength and high electrical conductivity in copper. Science 304, 422–426 (2004)

    Article  Google Scholar 

  13. J.D. Lee, H.H. Tsai, T.H. Chuang, Patent US8940403B2 (2012)

  14. S.P. Riege, J.A. Prybyla, A.W. Hunt, Influence of microstructure on electromigration dynamics in submicron Al interconnects: real-time imaging. Appl. Phys. Lett. 69, 2367–2369 (1996)

    Article  Google Scholar 

  15. J.R. Bowen, P.B. Prangnell, D.J. Jensen, N. Hansen, Microstructural parameters and flow stress in Al–0 13% Mg deformed by ECAE processing. Mater. Sci. Eng. A 387–389, 235–239 (2004)

    Article  Google Scholar 

  16. J.P. Hou, Q. Wang, H.J. Yang, X.M. Wu, C.H. Li, X.W. Li, Z.F. Zhang, Microstructure evolution and strengthening mechanisms of cold-drawn commercially pure aluminum wire. Mater. Sci. Eng. A 639, 103–106 (2015)

    Article  Google Scholar 

  17. X.M. Luo, Z.M. Song, M.L. Li, Q. Wang, G.P. Zhang, Microstructural evolution and service performance of cold-drawn pure aluminum conductor wires. J. Mater. Sci. Technol. 33, 1039–1043 (2017)

    Article  Google Scholar 

  18. J.A. Venables, The nucleation and propagation of deformation twins. J. Phys. Chem. Solids 25, 693–700 (1964)

    Article  Google Scholar 

  19. J.W. Park, H.J. Jeong, S.W. Jin, M.J. Kim, K. Lee, J.J. Kim, S.T. Hong, H.N. Han, Effect of electric current on recrystallization kinetics in interstitial free steel and AZ31 magnesium alloy. Mater. Charact. 133, 70–76 (2017)

    Article  Google Scholar 

  20. P.C. Liang, K.L. Lin, Non-deformation recrystallization of metal with electric current stressing. J. Alloys Compd. 722, 690–697 (2017)

    Article  Google Scholar 

  21. V. Randle, H. Davies, I. Cross, Grain boundary misorientation distributions. Curr. Opin. Solid State Mater. Sci. 5, 3–8 (2001)

    Article  Google Scholar 

  22. T. Hu, K. Ma, T.D. Topping, B. Saller, A. Yousefiani, J.M. Schoenung, E.J. Lavernia, Improving the tensile ductility and uniform elongation of high-strength ultrafine-grained Al alloys by lowering the grain boundary misorientation angle. Scr. Mater. 78–79, 25–28 (2014)

    Article  Google Scholar 

  23. S. Ranganathan, On the geometry of coincidence-site lattices. Acta Crystallogr. 21, 197–199 (1966)

    Article  Google Scholar 

  24. S. Kobayashi, R. Kobayashi, T. Watanabe, Control of grain boundary connectivity based on fractal analysis for improvement of intergranular corrosion resistance in SUS316L austenitic stainless steel. Acta Mater. 102, 397–405 (2016)

    Article  Google Scholar 

  25. V. Randle, Twinning-related grain boundary engineering. Acta Mater. 52, 4067–4081 (2004)

    Article  Google Scholar 

  26. G. Palumbo, K.T. Aust, U. Erb, P.J. King, A.M. Brennenstuhl, P. Lichtenberger, On annealing twins and CSL distributions in fcc polycrystals. Phys. Status Solidi A 131, 425–428 (1992)

    Article  Google Scholar 

  27. V. Randle, Mechanism of twinning-induced grain boundary engineering in low stacking-fault energy materials. Acta Mater. 47, 4187–4196 (1999)

    Article  Google Scholar 

  28. K.C. Chen, W.W. Wu, C.N. Liao, L.J. Chen, K.N. Tu, Observation of atomic diffusion at twin-modified grain boundaries in copper. Science 321(5892), 1066–1069 (2008)

    Article  Google Scholar 

  29. K. Edalati, D. Akama, A. Nishio, S. Lee, Y. Yonenaga, J.M. Cubero-Sesin, Z. Horita, Influence of dislocation–solute atom interactions and stacking fault energy on grain size of single-phase alloys after severe plastic deformation using high-pressure torsion. Acta Mater. 69, 68–77 (2014)

    Article  Google Scholar 

  30. S. Qu, X.H. An, H.J. Yang, C.X. Huang, G. Yang, Q.S. Zang, Z.G. Wang, S.D. Wu, Z.F. Zhang, Microstructural evolution and mechanical properties of Cu–Al alloys subjected to equal channel angular pressing. Acta Mater. 57, 1586–1601 (2009)

    Article  Google Scholar 

  31. B.C. Kim, S. Lee, N.J. Kim, D.Y. Lee, Microstructure and local brittle zone phenomena in high-strength low-alloy steel welds. Metall. Trans. A 22, 139–149 (1991)

    Article  Google Scholar 

  32. T.H. Chuang, H.J. Lin, C.H. Chuang, C.H. Tsai, J.D. Lee, H.H. Tsai, Durability to electromigration of an annealing-twinned Ag-4Pd alloy wire under current stressing. Metall. Mater. Trans. A 45, 5574–5583 (2014)

    Article  Google Scholar 

  33. N. Kamikawa, X. Huang, N. Tsuji, N. Hansen, Strengthening mechanisms in nanostructured high-purity aluminium deformed to high strain and annealed. Acta Mater. 57, 4198–4208 (2009)

    Article  Google Scholar 

  34. N. Hansen, Hall-Petch relation and boundary strengthening. Scr. Mater. 51, 801–806 (2004)

    Article  Google Scholar 

  35. M. Dao, L. Lu, Y.F. Shen, S. Suresh, Strength, strain-rate sensitivity and ductility of copper with nanoscale twins. Acta Mater. 54, 5421–5432 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support for this research by the Ministry of Science and Technology of Taiwan under Grant No. NSC 106-2221-E-005-026-MY3. The present work was also supported in part by the Center for Micro/Nano Science and Technology of the National Cheng Kung University and Innovation and Development Center of Sustainable Agriculture (IDCSA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuh-Sheng Shieu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuo, BH., Tsai, DC., Huang, YL. et al. Au-induced improvements in the grain stability and mechanical properties of Ag-based alloy wires under electrical current stressing. J Mater Sci: Mater Electron 30, 15897–15911 (2019). https://doi.org/10.1007/s10854-019-01936-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01936-3

Navigation