Skip to main content
Log in

First-Principles Study on Structural, Electronic, Elastic, Phonon, and Thermodynamic Properties of Tungsten Oxide-Based Perovskite NaWO3

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The structural, electronic, elastic, phonon, and thermodynamic properties of the cubic perovskite structure of the NaWO3 compound were calculated from first-principles studies based on density functional theory (DFT). These properties were computed within localized density approximation (LDA). The lattice constant (a) and bulk modulus (B) for NaWO3 are found as 3.857 Å, 225.314 GPa, respectively. The band structure displayed that the NaWO3 compound exhibits metallic behavior at zero pressure. For elastic properties, elastic constants (Cij), isotropic shear modulus (G), Young’s modulus (Y), Poisson’s ratio (\(v\)), and anisotropy factor (A) were studied. At zero pressure, the calculated C11, C12, and C44 are 558.933, 88.681, and 66.245 GPa, respectively. According to the results, NaWO3 is mechanically stable. A is not equal to 1. This reveals that NaWO3 is an anisotropic compound. Because of the Cauchy pressure and B/G ratio, NaWO3 behaves ductilely. The shear constants (C12 and C44) are less sensitive to pressure than C11 which indicates little resistance to shear deformation. The negative phonon frequencies were observed in phonon dispersion curves. Therefore, NaWO3 is dynamically unstable. Finally, heat capacity (CV), entropy (S), and Helmholtz-free energy (F) were also calculated and discussed at 0–1000 K. Consequently, NaWO3 is a potential candidate for future new device designs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G. Murtaza, R. Khenata, M.N. Khalid, and S. Naeem, Phys. B 410, 131 (2013).

    Article  CAS  Google Scholar 

  2. N.K. Gaur, and A. Parveen, J. Alloys Compd. 527, 219 (2012).

    Article  CAS  Google Scholar 

  3. M. Musa, H.E. Saad J. Sci. Adv. Mater. Dev. 2, 115 (2017)

  4. D. Chenine, Z. Aziz, A. Abbad, B. Bouadjemi, O.K. Youb, T. Lantri, O. Lakel, and S. Bentata, Chinese J. Phys. 55, 2514 (2017).

    Article  CAS  Google Scholar 

  5. A.A. Mubarak, and S. Al-Omari, J. Magn. Magn. Mater. 382, 211 (2015).

    Article  CAS  Google Scholar 

  6. H.M. Huang, Z.Y. Jiang, J.T. Yang, Y.C. Xiong, Z.D. He, Z.W. Zhu, and A. Laref, Chinese J. Phys. 58, 132 (2019).

    Article  CAS  Google Scholar 

  7. R.A.P. Ribeiro, and S.R. de Lázaro, Quim. Nova. 37, 1165 (2014).

    Article  CAS  Google Scholar 

  8. H. Takei, N. Kobayashi, H. Yamauchi, T. Shishido, and T. Fukase, J. Less Common Met. 125, 233 (1986).

    Article  CAS  Google Scholar 

  9. D. Vanderbilt, Curr. Opin. Solid St. M. 2, 701 (1997).

    Article  CAS  Google Scholar 

  10. G.A. Samara, Phys. Rev. B 1, 3777 (1970).

    Article  Google Scholar 

  11. C. Dotzler, G.V.M. Williams, and A. Edgar, Curr. Appl. Phys. 8, 447 (2008).

    Article  Google Scholar 

  12. T. Nishimatsu, N. Terakubo, H. Mizuseki, Y. Kawazoe, D.A. Pawlak, K. Shimamuri, and T. Fukuda, Jpn. J. Appl. Phys. 41, 365 (2002).

    Article  CAS  Google Scholar 

  13. K. Hoang, and M. Johannes, Chem. Mater. 28, 1325 (2016).

    Article  CAS  Google Scholar 

  14. K. Hoang, and M. Johannes, J. Mater. Chem. A 2, 5224 (2014).

    Article  CAS  Google Scholar 

  15. K. Hoang, M. Oh, and Y. Choi, RSC Adv. 8, 4191 (2018).

    Article  CAS  Google Scholar 

  16. S. Wang, H. Tian, C. Ren, J. Yu, and M. Sun, Sci. Rep. 8, 12009 (2018). https://doi.org/10.1038/s41598-018-30614-3.

    Article  CAS  Google Scholar 

  17. S. Wang, and J. Yu, J. Supercond. Nov. Magn. 31, 2789 (2018).

    Article  CAS  Google Scholar 

  18. M. Guennou, P. Bouvier, B. Krikler, J. Kreisel, R. Haumont, and G. Garbarino, Phys. Rev. B 82, 134101 (2010).

    Article  CAS  Google Scholar 

  19. D. de Ligny, and P. Richet, Phys. Rev. B 53, 3013 (1996).

    Article  Google Scholar 

  20. M.C. Weber, M. Guennou, H.J. Zhao, J. Íñiguez, R. Vilarinho, A. Almeida, J.A. Moreira, and J. Kreisel, Phys. Rev. B 94, 214103 (2016).

    Article  Google Scholar 

  21. S. Vidya, K.C. Mathai, A. John, S. Solomon, K. Joy, and J.K. Thomas, Adv. Mater. Res. 2, 141 (2013).

    Article  Google Scholar 

  22. R. Vilarinho, P. Bouvier, M. Guennou, I. Peral, M.C. Weber, P. Tavares, M. Mihalik Jr., M. Mihalik, G. Garbarino, M. Mezouar, J. Kreisel, A. Almeida, J.A Moreira, Phys. Rev. 99, 064109 (2019).

  23. Y. Wang, D.J. Weidner, R.C. Liebermann, and Y. Zhao, Phys. Earth Planet. In. 83, 13 (1994).

    Article  CAS  Google Scholar 

  24. M.C. Weber, J. Kreisel, P.A. Thomas, M. Newton, K. Sardar, and R.I. Walton, Phys. Rev. B 85, 054303 (2012).

    Article  CAS  Google Scholar 

  25. P. Ravindran, R. Vidya, A. Kjekshus, H. Fjellvåg, and O. Eriksson, Phys. Rev. B 74, 224412 (2006).

    Article  CAS  Google Scholar 

  26. A. Abbad, W. Benstaali, H.A. Bentounes, S. Bentata, and Y. Benmalem, Solid State Commun. 228, 36 (2016).

    Article  CAS  Google Scholar 

  27. L. Ju, and S.A. Dar, J. Electron Mater 48, 4886 (2019).

    Article  CAS  Google Scholar 

  28. A. Petraru, J. Schubert, M. Schmid, and Ch. Buchal, Appl. Phys. Lett 81, 1375 (2002).

    Article  CAS  Google Scholar 

  29. J.W. Fergus, Sens. and Actuators B Chem. 123, 1169 (2007).

    Article  CAS  Google Scholar 

  30. T. Addabbo, F. Bertocci, A. Fort, M. Gregorkiewitz, M. Mugnaini, R. Spinicci, and V. Vignolia, Sens. Actuators B Chem. 221, 1137 (2015).

    Article  CAS  Google Scholar 

  31. A. Bera, K. Wu, A. Sheikh, E. Alarousu, O.F. Mohammed, and T. Wu, J. Phys. Chem. C 118, 28494 (2014).

    Article  CAS  Google Scholar 

  32. Y. Shimizu, D. Koba, H. Saitoh, and S. Takase, ECS Trans. 1, 131 (2006).

    Article  CAS  Google Scholar 

  33. Y. Wang, D.J. Weidner, and F. Guyot, J. Geophys. Res. 101, 661 (1996).

    Article  CAS  Google Scholar 

  34. G. Fiquet, D. Andrault, A. Dewaele, T. Charpin, M. Kunz, and D. Haüsermann, Phys. Earth Planet. In. 105, 21 (1998).

    Article  CAS  Google Scholar 

  35. G. Murtaza, I. Ahmad, B. Amin, A. Afaq, M. Maqbool, J. Maqssod, I. Khan, and M. Zahid, Opt. Mater. 33, 553 (2011).

    Article  CAS  Google Scholar 

  36. Z. Ali, I. Ahmada, and A.H. Reshak, Phys. B 410, 217 (2013).

    Article  CAS  Google Scholar 

  37. S.A. Dar, R. Sharma, and A.K. Mishra, J. Mol. Graph. Model. 90, 120 (2019).

    Article  CAS  Google Scholar 

  38. S.A. Dar, M.A. Ali, and V. Srivastava, Eur. Phys. J. B 93, 102 (2020).

    Article  CAS  Google Scholar 

  39. G. Chen, Z. Hu, Y. Zhu, Z.-G. Chen, Y. Zhong, H.-J. Lin, C.-T. Chen, L.H. Tjeng, W. Zhou, and Z. Shao, J. Mater. Chem. A 6, 9854 (2018).

    Article  CAS  Google Scholar 

  40. K.R. Talley, J. Mangum, C.L. Perkins, R. Woods-Robinson, A. Mehta, B.P. Gorman, G.L. Brennecka, and A. Zakutayev, Adv. Electron. Mater. 5, 1900214 (2019).

    Article  CAS  Google Scholar 

  41. K. Ishida, Y. Ikeuchi, C. Tassel, H. Takatsu, C.M. Brown, and H. Kageyama, Inorganics 7, 63 (2019).

    Article  CAS  Google Scholar 

  42. A. Azens, A. Hjelm, D. Le Bellac, C.G. Granqvist, J. Barczynska, and E. Pentjuss, Solid State Ion. 86–88, 943 (1996).

    Article  Google Scholar 

  43. G. Haegg, Nature 135, 874 (1935).

    Article  Google Scholar 

  44. G. Haegg, Z. Physik Chem. B29, 192 (1935).

    Article  Google Scholar 

  45. D.P. Tunstall, Phys. Rev. B 11, 2821 (1975).

    Article  CAS  Google Scholar 

  46. D.P. Tunstall, and W. Ramage, J. Phys. C: Solid State Phys. 13, 725 (1980).

    Article  CAS  Google Scholar 

  47. W. Ramage, and D.P. Tunstall, J. Phys. C: Solid State Phys. 13, 1623 (1980).

    Article  CAS  Google Scholar 

  48. Y. Ikeuchi, H. Takatsu, C. Tassel, C.M. Brown, T. Murakami, Y. Matsumoto, Y. Okamoto, and H. Kageyama, Inorg. Chem. 58, 6790 (2019).

    Article  CAS  Google Scholar 

  49. L. Tegg, D. Cuskelly, and V.J. Keast, Plasmonics 13, 437 (2018).

    Article  CAS  Google Scholar 

  50. S. Raj, H. Matsui, S. Souma, T. Sato, T. Takahashi, A. Chakraborty, D.D. Sarma, P. Mahadevan, S. Oishi, W.H. McCarroll, and M. Greenblatt, Phys. Rev. B 75, 155116 (2007).

    Article  CAS  Google Scholar 

  51. S. Raj, D. Hashimoto, H. Matsui, S. Souma, T. Sato, T. Takahashi, S. Ray, A. Chakraborty, D.D. Sarma, P. Mahadevan, W.H. McCarroll, and M. Greenblatt, Phys. Rev. B 72, 125125 (2005).

    Article  CAS  Google Scholar 

  52. I.C. Lekshmi, A. Gayen, V. Prasad, S.V. Subramanyam, and M.S. Hegde, Mater. Res. Bull. 37, 1815 (2002).

    Article  CAS  Google Scholar 

  53. B. Ingham, S.C. Hendy, S.V. Chong, and J.L. Tallon, Phys. Rev. B 72, 075109 (2005).

    Article  CAS  Google Scholar 

  54. A. Hjelm, C.G. Granqvist, and J.M. Wills, Phys. Rev. B 54, 2436 (1996).

    Article  CAS  Google Scholar 

  55. A.S. Verma, and V.K. Jindal, J. Alloys Compd. 485, 514 (2009).

    Article  CAS  Google Scholar 

  56. A.S. Verma, A. Kumar, and S.R. Bhardwaj, Phys. stat. sol. (b) 245, 1520 (2008).

    Article  CAS  Google Scholar 

  57. L.Q. Jiang, J.K. Guo, H.B. Liu, M. Zhu, X. Zhou, P. Wu, and C.H. Li, J. Phys. Chem. Solids 67, 1531 (2006).

    Article  CAS  Google Scholar 

  58. R. Ubic, J. Am. Ceram. Soc. 90, 3326 (2007).

    Article  CAS  Google Scholar 

  59. D. Bocharov, A. Kuzmin, J. Purans, Y. Zhukovskii, Article in Proceedings, Vol 7142, Sixth International Conference on Advanced Optical Materials and Devices (Riga-Latvia) (2008).

  60. G.A. de Wijs, P.K. de Boer, R.A. de Groot, and G. Kresse, Phys. Rev. B 59, 2684 (1999).

    Article  Google Scholar 

  61. F. Cora, M.G. Stachiotti, C.R.A. Catlow, and C.O. Rodriguez, J. Phys. Chem. B 101, 3945 (1997).

    Article  CAS  Google Scholar 

  62. R.L. Moreira, and A. Dias, J. Phys. and Chem. of Solids 68, 1617 (2007).

    Article  CAS  Google Scholar 

  63. G. Kresse, and J. Hafner, Phys. Rev. B 47, 558 (1993).

    Article  CAS  Google Scholar 

  64. G. Kresse, and J. Hafner, J. Phys.: Condens. Matter 6, 8245 (1994).

    CAS  Google Scholar 

  65. G. Kresse, and J. Hafner, Phys. Rev. B 49, 14251 (1994).

    Article  CAS  Google Scholar 

  66. G. Kresse, and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).

    Article  CAS  Google Scholar 

  67. G. Kresse, and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  CAS  Google Scholar 

  68. D.M. Ceperley, and B.J. Alder, Phys. Rev. Lett. 45, 566 (1980).

    Article  CAS  Google Scholar 

  69. H.J. Monkhorst, and J.D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  Google Scholar 

  70. F.D. Murnaghan, Proc. Natl. Acad. Sci. USA 30, 244 (1944).

    Article  CAS  Google Scholar 

  71. D. Bullett, J. Phys. C 16, 2197 (1983).

    Article  CAS  Google Scholar 

  72. V.G. Deĭbuk, and Y.I. Viklyuk, Semiconductors 36, 1091 (2002).

    Article  CAS  Google Scholar 

  73. P. S. Nnamchi, C. S. Obayi, Elasticity of Materials‐Basic Principles and Design of Structures, Concept of Phase Transition Based on Elastic Systematics (IntechOpen, 2018).

  74. Y.X. Zhou, P. Yan, X.Y. Chong, and J. Feng, AIP Adv. 8, 105132 (2018).

    Article  CAS  Google Scholar 

  75. X.P. Gao, Y.H. Jiang, R. Zhou, and J. Feng, J. Alloys Comp. 587, 819 (2014).

    Article  CAS  Google Scholar 

  76. Q. Liu, and Q. He, Acta Phys. Pol. A 112, 69 (2007).

    Article  CAS  Google Scholar 

  77. O.H. Nielsen, and R.M. Martin, Phys. Rev. Lett. 50, 697 (1983).

    Article  CAS  Google Scholar 

  78. M. Born, and K. Huang, Dynamical Theory of Crystal Lattices, 1st ed., (Oxford: Clarendon, 1956), pp. 140–154.

    Google Scholar 

  79. R.A. Johnson, Phys. Rev. B 37, 3924 (1988).

    Article  CAS  Google Scholar 

  80. D.G. Pettifor, Mater. Sci. Technol. 8, 345 (1992).

    Article  CAS  Google Scholar 

  81. B. Mayer, H. Anton, E. Bott, M. Methfessel, J. Sticht, J. Harris, and P.C. Schmidt, Intermetallics 11, 23 (2003).

    Article  CAS  Google Scholar 

  82. O.L. Anderson, J. Phys. Chem. Solids 24, 909 (1963).

    Article  CAS  Google Scholar 

  83. S.F. Pugh, Philos. Mag. 45, 823 (1954).

    Article  CAS  Google Scholar 

  84. X. Hao, Y. Xu, Z. Wu, D. Zhou, X. Liu, and J. Meng, J. Alloys Compd. 453, 413 (2008).

    Article  CAS  Google Scholar 

  85. K. Lau, and A.K. McCurdy, Phys. Rev. B 58, 8980 (1998).

    Article  CAS  Google Scholar 

  86. M. Friák, M. Sob, and V. Vitek, Philos. Mag. 83, 3529 (2003).

    Article  CAS  Google Scholar 

  87. M. H. Ledbetter, Materials at Low Temperatures, (eds) R. P. Reed, A. F. Clark (Metals Park OH: American Society for Metals, 1983) p. 1.

  88. S. Yu, Q. Zeng, A.R. Oganov, G. Frappere, and L. Zhanga, Phys. Chem. Chem. Phys. 17, 11763 (2015).

    Article  CAS  Google Scholar 

  89. M. Levy, H. Bass, R. Stern, Modern Acoustic Techniques for the Measurement of Mechanical Properties, vol. 39, 1st edn. (Academic Press, 2001), pp. 17-18.

  90. Y.H. Duan, Y. Sun, M.J. Peng, and S.G. Zhou, J. Alloys Compd. 585, 587 (2014).

    Article  CAS  Google Scholar 

  91. P.K. Panigrahi, Transport Phenomena in Microfluidic Systems (New Jersy: Wiley, 2016), p. 319.

    Book  Google Scholar 

  92. E. Schreiber, O.L. Anderson, and N. Soga, Elastic Constants and Their Measurements (New York: McGraw-Hill, 1973).

    Google Scholar 

  93. A. Togo, and I. Tanaka, Scr. Mater. 108, 1 (2015).

    Article  CAS  Google Scholar 

  94. J. Even, M. Carignano, and C. Katan, Nanoscale 8, 6222 (2016).

    Article  CAS  Google Scholar 

  95. K. Parlinski, and Y. Kawazoe, Eur. Phys. J. B 16, 49 (2000).

    Article  CAS  Google Scholar 

  96. X. Liu, and H.-Q. Fan, R. Soc. Open sci. 5, 171921 (2018).

    Article  CAS  Google Scholar 

  97. M.T. Dove, Introduction to Lattice Dynamics, 1st ed., (Cambridge: Cambridge University Press, 1993), pp. 64–65.

    Book  Google Scholar 

  98. Y. Aierken, D. Çakır, C. Sevik, and F.M. Peeters, Phys. Rev. B 92, 081408(R) (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by Balıkesir University Research Project Unit under Project No: 2016/60.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Çoban.

Ethics declarations

Conflıct of ınterest

The author declares that she has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çoban, C. First-Principles Study on Structural, Electronic, Elastic, Phonon, and Thermodynamic Properties of Tungsten Oxide-Based Perovskite NaWO3. J. Electron. Mater. 50, 5402–5411 (2021). https://doi.org/10.1007/s11664-021-09068-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09068-3

Keywords

Navigation