Skip to main content
Log in

Probing the Structural, Electronic, Mechanical Strength and Thermodynamic Properties of Tungsten-Based Oxide Perovskites RbWO3 and CsWO3: First-Principles Investigation

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In the present paper we have investigated tungsten-based cubic perovskite oxides RbWO3 and CsWO3 for structural, electronic and elastic-mechanical results using first-principles density functional theory. Generalized gradient approximation (GGA) and local density approximation (LDA) have been used for structural optimization. The calculated results like lattice constant, volume, bulk modulus, pressure derivative of bulk modulus and energy have been obtained from both GGA and LDA. Results of band structure calculations along high-symmetry directions of the Brillouin zone and the density of states showed the metallic nature for both the materials. The d-states of tungsten and p-states of oxygen are found to be present at the Fermi level and are responsible for the metallic nature of these compounds. The elastic constants (C11, C12 and C44) have been computed in order to understand the mechanical stability of these materials. Using the value of these elastic constants, some important mechanical properties of these materials like Young’s modulus, shear modulus and bulk modulus have been predicted. Both the materials were found to have a large bulk modulus, Young’s modulus and shear modulus, and hence may serve as important candidates in fuel cells as electrode materials. The calculated melting temperature from elastic constants for both the materials was found to be large enough, equal to 3215 ± 300 K and 3016 ± 300 K, respectively, for RbWO3 and CsWO3. Cauchy’s pressure (C12C44), Poisson’s ratio (υ) and the Pugh ratio (B/G) predict both the materials as brittle. Thermodynamic parameters like specific heat capacity, Debye temperature and thermal expansion have been calculated as a function of temperature (0 K to 1400 K) and pressure (0 GPa to 32 GPa).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z.H. Zhu and X.H. Yan, J. Appl. Phys. 106, 023713 (2009).

    Article  Google Scholar 

  2. D. Głowienka, T. Miruszewski, and J. Szmytkowski, Solid State Sci. 82, 19 (2018).

    Article  Google Scholar 

  3. V. Adinolfi, W. Peng, G. Walters, O.M. Bakr, and E.H. Sargen, Adv. Mater. 30, 1700764 (2018).

    Article  Google Scholar 

  4. W. Li and L.-J. Ji, Science 361, 132 (2018).

    Article  Google Scholar 

  5. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009).

    Article  Google Scholar 

  6. M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, and H.J. Snaith, Science 338, 1228604 (2012).

    Google Scholar 

  7. H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, and J.E. Moser, Sci. Rep. 2, 591 (2012).

    Article  Google Scholar 

  8. M. Imada, A. Fujimori, and Y. Tokura, Mod. Phys. 70, 1039 (1998).

    Article  Google Scholar 

  9. S.F. Hichernell, IEEE 52, 737 (2005).

    Google Scholar 

  10. M. Bibes and A. Barthélémy, Nat. Mater. 7, 425 (2008).

    Article  Google Scholar 

  11. Y. Tokura, eds., Advances in condensed matter science, Vol. 2 (The Netherlands: Gordan and Breach, 2000).

    Google Scholar 

  12. N.C. Bristowe, J. Varignon, D. Fontaine, E. Bousquet, and P. Ghosez, Nat. Commun. 6, 6677 (2015).

    Article  Google Scholar 

  13. Y. Tokura and N. Nagaosa, Science 288, 462 (2000).

    Article  Google Scholar 

  14. E.A. Antoine and C. Wolverton, Sci. Data 4, 170153 (2017).

    Article  Google Scholar 

  15. P. Ravindran, R. Vidya, A. Kjekshus, and H. Fjellvåg, Phys. Rev. B. 74, 224412 (2006).

    Article  Google Scholar 

  16. A. Petraru, J. Schubert, M. Schmid, and C. Buchal, Appl. Phys. Lett. 81, 1375 (2002).

    Article  Google Scholar 

  17. Appl Krautschneider, Phys. Lett. 90, 083501 (2007).

    Google Scholar 

  18. H. Zhang, J. Wook, K. Wang, and G.K. Webber, Ceram. Int. 40, 4759 (2014).

    Article  Google Scholar 

  19. F.A. Yildirim, C. Ucurum, R.R. Schliewe, W. Bauhofer, R.M. Meixner, H. Goebel, and W. Krautschneider, Appl. Phys. Lett. 90, 083501 (2007).

    Article  Google Scholar 

  20. A. Abbad, W. Benstaali, H.A. Bentounes, S. Bentata, and Y. Benmalem, Solid State Commun. 228, 36 (2016).

    Article  Google Scholar 

  21. S. Jin, T.H. Tiefel, M. McCormack, R.A. Fastnacht, R. Ramesh, and L.H. Chen, Science 264, 413 (1994).

    Article  Google Scholar 

  22. S.-W. Cheong and M. Mostovoy, Nat. Mater. 6, 13 (2007).

    Article  Google Scholar 

  23. S.A. Dar, V. Srivastava, U.K. Sakalle, V. Parey, and G. Pagare, Mater. Sci. Eng. B 236–237, 217 (2018).

    Google Scholar 

  24. S.A. Dar, V. Srivastava, U.K. Sakalle, and G. Pagare, Comput. Condens. Matter 14, 137 (2018).

    Article  Google Scholar 

  25. S.A. Dar, V. Srivastava, U.K. Sakalle, and G. Pagare, J. Supercond. Nov. Magn. 31, 3201 (2018).

    Article  Google Scholar 

  26. P.V. Balachandran, A.A. Emery, J.E. Gubernatis, T. Lookman, C. Wolverton, and A. Zunger, Phys. Rev. Mater. 2, 043802 (2018).

    Article  Google Scholar 

  27. B. Ingham, S.C. Hendy, S.V. Chong, and J.L. Tallon, Phys. Rev. B 72, 075109 (2005).

    Article  Google Scholar 

  28. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kuasnicke, and J. Luitz, Introduction to WIEN2K, An Augmented Plane Wane Plus Local Orbitals Program for Calculating Crystal Properties (Vienna: Vienna University of Technology, 2001).

    Google Scholar 

  29. K. Schwarz, P. Blaha, and G.K.H. Madsen, Comput. Phys. Commun. 147, 71 (2002).

    Article  Google Scholar 

  30. S.A. Dar, V. Srivastava, and U.K. Sakalle, J. Electron. Mater. 46, 6870 (2017).

    Article  Google Scholar 

  31. A. Otero-de-la-Roza and V. Luaea, Phys. Rev. B 84, 184103 (2011).

    Article  Google Scholar 

  32. M.A. Blanco, A.M. Pendas, and E.J. Francisco, J. Mol. Struct. Theochem. 268, 245 (1996).

    Article  Google Scholar 

  33. Z. Wu and R.E. Cohen, Phys. Rev. B 73, 235116 (2006).

    Article  Google Scholar 

  34. L. Hedin and B.I. Lundqvist, J. Phys. C4, 2064 (1971).

    Google Scholar 

  35. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  36. H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  Google Scholar 

  37. F. Birch, J. Appl. Phys. 9, 279 (1938).

    Article  Google Scholar 

  38. T. Charpin. A Package for Calculating Elastic Tensors of Cubic Phases Using WIEN: Laboratory of Geometrix F-75252 (Paris, France) (2001).

  39. M. Born, On the stability of crystal lattices. I. Proc. Camb. Philos. Soc. 36, 160e172 (1940).

    Google Scholar 

  40. M. Born and K. Huang, Dynamical Theory of Crystal Lattices (London: Oxford University Press, 1956).

    Google Scholar 

  41. A. Reuss and Z. Angew, Mater. Phys. 9, 49 (1929).

    Google Scholar 

  42. R. Hill, Proc. Phys. Soc. Lond. 65, 349 (1952).

    Article  Google Scholar 

  43. S.F. Pugh, Philos. Mag. 45, 823 (1954).

    Article  Google Scholar 

  44. S.A. Dar, V. Srivastava, U.K. Sakalle, and V. Parey, Eur. Phys. J. Plus 131, 64 (2018).

    Article  Google Scholar 

  45. I.N. Frantsevich, F.F. Voronov, and S.A. Bokuta, Elastic Constants and Elastic Moduli of Metals and Insulators Handbook, vol. 60, ed. I.N. Frantsevich (Kiev: Naukova Dumka, 1982, 1990).

    Google Scholar 

  46. T. Vergaard and J.W. Hirtchinson, J. Am. Ceram. Soc. 71, 157 (1988).

    Article  Google Scholar 

  47. Z. Wan, Y. Yu, H.F. Zhang, T. Gao, X.J. Chen, and C.J. Xiao, Eur. Phys. J. B 85, 181 (2012).

    Article  Google Scholar 

  48. M.E. Fine, L.D. Brown, and H.L. Marcus, Scr. Metall. 18, 951 (1984).

    Article  Google Scholar 

  49. A.T. Petit and P.L. Dulong, Ann. Chim. Phys. 10, 395 (1819).

    Google Scholar 

Download references

Acknowledgments

This paper is supported by the research project of robotic gas detection in computer system of the Science and Technology Research Program of Chongqing Education Commission (KJQN201804006). Further the author S. A. Dar is thankful to Prof. P. Blaha for Wien2k code.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajad Ahmad Dar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ju, L., Dar, S.A. Probing the Structural, Electronic, Mechanical Strength and Thermodynamic Properties of Tungsten-Based Oxide Perovskites RbWO3 and CsWO3: First-Principles Investigation. J. Electron. Mater. 48, 4886–4894 (2019). https://doi.org/10.1007/s11664-019-07277-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07277-5

Keywords

Navigation