Skip to main content
Log in

Electrical Properties of Lithium-Ion Conducting Poly (Vinylidene Fluoride-Co-Hexafluoropropylene) (PVDF-HFP)/Polyvinylpyrrolidone (PVP) Solid Polymer Electrolyte

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Lithium bromide ionic salt dispersed with poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP)/polyvinylpyrrolidone (PVP) blend polymers have been prepared by solution casting, and used as an electrolyte for the improvement of solid-state lithium batteries. The structural and molecular bond identification studies of polymer electrolytes have been studied and confirmed using x-ray diffraction (XRD) and Fourier-transform (FTIR) analysis. Electrical characterizations of solid polymer films have been studied by AC impedance analysis. The higher conducting sample follows the Arrhenius relationship, and the conductivity based on the dielectric constant obeys modified Arrhenius behavior. The ion transport mechanisms coincide with the correlated barrier height (CBH) model, and the ionic diffusion was verified through the tunneling mechanism. Optical properties for the prepared polymer electrolytes have been investigated using ultra violet (UV) spectrum analysis. From this analysis, the higher conductivity polymer electrolyte has a minimum band gap at 4.14 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. S. Ullah, G. Yasin, A. Ahmad, L. Qin, Q. Yuan, A.U. Khan, U.A. Khan, A.U. Rahman, and Y. Slimani, Inorg. Chem. Front. 7, 1750 (2020).

    Article  CAS  Google Scholar 

  2. G. Yasin, M. Arif, T. Mehtab, M. Shakeel, M.A. Mushtaq, A. Kumar, T.A. Nguyen, Y. Slimani, M.T. Nazir, and H. Song, Inorg. Chem. Front. 7, 402 (2020).

    Article  CAS  Google Scholar 

  3. M. Nadeem, G. Yasin, M. Arif, H. Tabassum, M.H. Bhatti, M. Mehmood, U. Yunus, R. Iqbal, T.A. Nguyen, Y. Slimani, H. Song, and W. Zhao, Chem. Eng. J. 409, 128205 (2021).

    Article  CAS  Google Scholar 

  4. A. Kumar, G. Yasin, V.K. Vashistha, D.K. Das, M.U. Rehman, R. Iqbal, Z. Mo, T.A. Nguyen, Y. Slimani, M.T. Nazir, and W. Zhao, Diam. Relat. Mater. 113, 108272 (2021).

    Article  CAS  Google Scholar 

  5. A. Kumar, G. Yasin, R.M. Korai, Y. Slimani, M.F. Ali, M. Tabish, M. Tariq Nazir, and T.A. Nguyen, Inorg. Chem. Commun. 120, 108160 (2020).

    Article  CAS  Google Scholar 

  6. K. Seevakan, A. Manikandan, P. Devendran, Y. Slimani, A. Baykal, and T. Alagesan, J. Magn. Magn. Mater. 486, 165254 (2019).

    Article  CAS  Google Scholar 

  7. K. Seevakan, A. Manikandan, P. Devendran, Y. Slimani, A. Baykal, and T. Alagesan, Ceram. Int. 44, 20075 (2018).

    Article  CAS  Google Scholar 

  8. Y. Slimani, E. Hannachi, Ru-based perovskites/RGO composites for applications in high performance supercapacitors, in Hybrid Perovskite Compos. Mater. (Elsevier, 2021) 335–354

  9. E. Hannachi, Y. Slimani, Nanomaterials for nanogenerator, in Nanobatteries and Nanogenerators (Elsevier, 2021), 69–87

  10. Y. Slimani, E. Hannachi, Nanomaterials and nanotechnology for high-performance rechargeable battery, in Nanobatteries and Nanogenerators (Elsevier, 2021), pp. 343–363

  11. O.G. Abdullah, Y.A.K. Salman, and S.A. Saleem, J. Mater. Sci. Mater. Electron. 27, 3591 (2016).

    Article  CAS  Google Scholar 

  12. D. Kumar, and S.A. Hashmi, Solid State Ionics 181, 416 (2010).

    Article  CAS  Google Scholar 

  13. R. Miao, B. Liu, Z. Zhu, Y. Liu, J. Li, X. Wang, and Q. Li, J. Power Sources 184, 420 (2008).

    Article  CAS  Google Scholar 

  14. V.B. Achari, T.J.R. Reddy, A.K. Sharma, and V.V.R.N. Rao, Ionics 13, 349 (2007).

    Article  CAS  Google Scholar 

  15. S.B. Aziz, S. Al-Zangana, H.J. Woo, M.F.Z. Kadir, and O.G. Abdullah, Results Phys. 11, 826 (2018).

    Article  Google Scholar 

  16. M.S.A. Rani, N.S. Mohamed, and M.I.N. Isa, Int. J. Polym. Anal. Charact. 20, 491 (2015).

    Article  CAS  Google Scholar 

  17. O.G.H. Abdullah, R.R. Hanna, and Y.A.K. Salman, Bull. Mater. Sci. 42, 64 (2019).

    Article  CAS  Google Scholar 

  18. M.H. Buraidah, and A.K. Arof, J. Non. Cryst. Solids. 357, 3261 (2011).

    Article  CAS  Google Scholar 

  19. M.F.Z. Kadir, S.R. Majid, and A.K. Arof, Electrochim. Acta. 55, 1475 (2010).

    Article  CAS  Google Scholar 

  20. S.V. Ganesan, K.K. Mothilal, S. Selvasekarapandian, and T.K. Ganesan, J. Mater. Sci. Mater. Electron. 29, 8089 (2018).

    Article  CAS  Google Scholar 

  21. V. Duraikkan, A.B. Sultan, N. Nallaperumal, and A. Shunmuganarayanan, Ionics 24, 139 (2018).

    Article  CAS  Google Scholar 

  22. S.K. Patla, M. Mukhopadhyay, and R. Ray, Ionics (Kiel) 25, 627 (2019).

    Article  CAS  Google Scholar 

  23. K. Sundaramahalingam, M. Muthuvinayagam, N. Nallamuthu, D. Vanitha, and M. Vahini, Polym. Bull. 76, 5577 (2019).

    Article  CAS  Google Scholar 

  24. J.H. Cao, B.K. Zhu, and Y.Y. Xu, J. Memb. Sci. 281, 446 (2006).

    Article  CAS  Google Scholar 

  25. Z. Wang, and Z. Tang, Mater. Chem. Phys. 82, 16 (2003).

    Article  CAS  Google Scholar 

  26. J. Hassoun, S. Panero, P. Reale, and B. Scrosati, Adv. Mater. 21, 4807 (2009).

    Article  CAS  Google Scholar 

  27. J.M. Tarascon, and M. Armand, Nature 414, 359 (2001).

    Article  CAS  Google Scholar 

  28. D. Zhang, R. Li, T. Huang, and A. Yu, J. Power Sources. 195, 1202 (2010).

    Article  CAS  Google Scholar 

  29. J.A. Lee, J.Y. Lee, M.H. Ryou, G.B. Han, J.N. Lee, D.J. Lee, J.K. Park, and Y.M. Lee, J. Solid State Electrochem. 15, 753 (2011).

    Article  CAS  Google Scholar 

  30. P. Arora, and Z. Zhang, Chem. Rev. 104, 4419 (2004).

    Article  CAS  Google Scholar 

  31. Y. Lin, X. Wang, J. Liu, and J.D. Miller, Nano Energy 31, 478 (2017).

    Article  CAS  Google Scholar 

  32. F.K.M. Genova, S. Selvasekarapandian, S. Karthikeyan, N. Vijaya, R. Pradeepa, and S. Sivadevi, Polym. Sci. Ser. A. 57, 851 (2015).

    Article  CAS  Google Scholar 

  33. J.P. Tafur, F. Santos, and A.J. Fernández Romero, Membranes (Basel) 5, 752 (2015).

    Article  CAS  Google Scholar 

  34. N. Angulakshmi, S. Thomas, K.S. Nahm, M.M. Stephan, and N.N. Elizabeth, Ionics 17, 407 (2011).

    Article  CAS  Google Scholar 

  35. M. Sangeetha, A. Mallikarjun, M. Jaipal Reddy, and J. Siva Kumar, IOP Conf. Ser. Mater. Sci. Eng. 225, 012049 (2017).

    Article  Google Scholar 

  36. J. Karger, Z. Phys. Chem. 189, 274 (1995).

    Article  CAS  Google Scholar 

  37. S. Ramesh, A.H. Yahaya, and A.K. Arof, Solid State Ionics 152–153, 291 (2002).

    Article  Google Scholar 

  38. P.M. Shyly, S. Dawn Dharma Roy, P. Thiravetyan, S. Thanikaikarasan, P.J. Sebastian, D. Eapen, and X. SahayaShajan, J. New Mater. Electrochem. Syst. 17, 133 (2014).

    Article  Google Scholar 

  39. S.K. Shalu, R.K. Chaurasia, and S. Singh, J. Phys. Chem. B. 117, 897 (2013).

    Article  CAS  Google Scholar 

  40. L.N. Sim, S.R. Majid, and A.K. Arof, Vib. Spectrosc. 58, 57 (2012).

    Article  CAS  Google Scholar 

  41. R. Manjuladevi, M. Thamilselvan, S. Selvasekarapandian, R. Mangalam, M. Premalatha, and S. Monisha, Solid State Ionics 308, 90 (2017).

    Article  CAS  Google Scholar 

  42. K. Sundaramahalingam, D. Vanitha, N. Nallamuthu, A. Manikandan, and M. Muthuvinayagam, Phys. B Condens. Matter. 553, 120 (2019).

    Article  CAS  Google Scholar 

  43. N.M. Zain, and A.K. Arof, Mater. Sci. Eng. B. 52, 40 (1998).

    Article  Google Scholar 

  44. Z. Shen, G.P. Simon, and Y.B. Cheng, Eur. Polym. J. 39, 1917 (2003).

    Article  CAS  Google Scholar 

  45. B.L. Papke, J. Electrochem. Soc. 129, 1434 (1982).

    Article  CAS  Google Scholar 

  46. A. Dey, S. Karan, and S.K. De, Solid State Commun. 149, 1282 (2009).

    Article  CAS  Google Scholar 

  47. K. Sundaramahalingam, N. Nallamuthu, A. Manikandan, D. Vanitha, and M. Muthuvinayagam, Phys. B Condens. Matter. 547, 55 (2018).

    Article  CAS  Google Scholar 

  48. S.B. Aziz, J. Inorg. Organomet. Polym. Mater. 28, 1942 (2018).

    Article  CAS  Google Scholar 

  49. K.A. Mauritz, Macromolecules 22, 4483 (1989).

    Article  CAS  Google Scholar 

  50. F. Kremer, A. Schönhals, Broadband dielectric measurement techniques, in Broadband Dielectr. Spectrosc. (Springer, 2003).

  51. M.N. Ahamad, and K.B.R. Varma, Mater. Sci. Eng. B 167, 193 (2010).

    Article  CAS  Google Scholar 

  52. M.Z. Iqbal, J. Adv. Res. 7, 135 (2016).

    Article  CAS  Google Scholar 

  53. M.H. Buraidah, L.P. Teo, S.R. Majid, and A.K. Arof, Phys. B Condens. Matter. 404, 1373 (2009).

    Article  CAS  Google Scholar 

  54. M.F.Z.A. Kadir, L.P. Teo, S.R. Majid, and A.K. Arof, Mater. Res. Innov. 13, 259 (2009).

    Article  Google Scholar 

  55. C.V. Subba Reddy, A.P. Jin, Q.Y. Zhu, L.Q. Mai, and W. Chen, Eur Phys J E 19, 471 (2006).

    Article  CAS  Google Scholar 

  56. S.B. Aziz, Z.H.Z. Abidin, and A.K. Arof, Express Polym. Lett. 4, 300 (2010).

    Article  CAS  Google Scholar 

  57. R.M. Hill, and L.A. Dissado, J. Phys. C Solid State Phys. 18, 3829 (1985).

    Article  CAS  Google Scholar 

  58. N. Kulshrestha, B. Chatterjee, and P.N. Gupta, High Perform. Polym. 26, 677 (2014).

    Article  CAS  Google Scholar 

  59. K. Sundaramahalingam, M. Muthuvinayagam, and N. Nallamuthu, Polym. Sci. Ser. A. 61, 565 (2019).

    Article  CAS  Google Scholar 

  60. M.A. Morsi, and A.M. Abdelghany, Mater. Chem. Phys. 201, 100 (2017).

    Article  CAS  Google Scholar 

  61. Y. Slimani, A. Selmi, E. Hannachi, M.A. Almessiere, M. Mumtaz, A. Baykal, and I. Ercan, J. Mater. Sci. Mater. Electron. 30, 13509 (2019).

    Article  CAS  Google Scholar 

  62. Y. Slimani, M.A. Almessiere, S.E. Shirsath, E. Hannachi, G. Yasin, A. Baykal, B. Ozçelik, and I. Ercan, J. Magn. Magn. Mater. 510, 166933 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial assistance from DST-SERB (TARE), India through the Research Project (TAR/2018/001323) is gratefully acknowledged by N. Nallamuthu.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. R. Nagarajan or N. Nallamuthu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karpagavel, K., Sundaramahalingam, K., Manikandan, A. et al. Electrical Properties of Lithium-Ion Conducting Poly (Vinylidene Fluoride-Co-Hexafluoropropylene) (PVDF-HFP)/Polyvinylpyrrolidone (PVP) Solid Polymer Electrolyte. Journal of Elec Materi 50, 4415–4425 (2021). https://doi.org/10.1007/s11664-021-08967-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08967-9

Keywords

Navigation