Skip to main content
Log in

Trench-template fabrication of indium and silicon nanowires prepared by thermal evaporation process

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this study, we report on the trench-template assisted fabrication of nanowires for thermally evaporated indium and silicon thin films on quartz substrate. Length of the nanowires is completely dependent on the length of the trench, whereas the diameter of the nanowires is dependent on the thickness of the thin film. The diameter of nanowire increases from 200 nm to 1 μm when the thickness was increased from 15 to 60 nm. It is observed that nanowires diameter is invariably controlled by material deposition thickness. Average crystallite sizes for 60 nm indium and silicon deposition inside the trench are 120 and 35 nm, respectively. Nanowire surface plasmon peak shift as compared to the same thickness untemplated continuous thin film is more for thinner nanowires. This technique of nanowire fabrication is shown to be versatile in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Black MR, Liu YM, Cronin SB, Rabin O, Dresselhaus MS (2002) Infrared absorption in bismuth nanowires resulting from quantum confinement. Phys Rev B 65:195417

    Article  ADS  Google Scholar 

  • Cui Y, Wei Q, Park H, Lieber CM (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293:1289–1292

    Article  CAS  PubMed  ADS  Google Scholar 

  • Ditlbacher H, Hohenau A, Wagner D, Kreibig U, Rogers M, Hofer F, Aussenegg FR, Krenn JR (2005) Silver nanowires as surface plasmon resonators. Phys Rev Lett 95:257403

    Article  PubMed  ADS  Google Scholar 

  • Johnson JC, Choi HJ, Knutsen KP, Schaller RD, Yang P, Saykally RJ (2002) Single gallium nitride nanowire lasers. Nat Mater 1:106–110

    Article  CAS  PubMed  ADS  Google Scholar 

  • Kong YC, Yu DP, Zhang B, Wang F, Feng SQ (2001) Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach. Appl Phys Lett 78:407

    Article  CAS  ADS  Google Scholar 

  • Krans JM, Ruitenbeek JMV, Fisun VV, Yanson IK, Jongh LJD (1995) The signature of conductance quantization in metallic point contacts. Nature 375:767–769

    Article  CAS  ADS  Google Scholar 

  • Krenn JR, Lamprecht B, Ditlbacher H, Schider G, Salerno M, Leitner A, Aussenegg FR (2002) Non diffraction limited light transport by gold nanowires. Europhys Lett 60:663

    Article  CAS  ADS  Google Scholar 

  • Krishna MG, Kumar P (2009) Non-lithographic techniques for nanostructuring thin films and surfaces. In: Ahmed W, Jackson MJ (eds) Emerging nanotechnologies in manufacturing. William Andrews Inc, Academic Press, New York. ISBN 9780815515838

    Google Scholar 

  • Kumar P, Krishna MG, Bhatnagar AK, Bhattacharya AK (2008) Template-assisted fabrication of nanowires. Int J Nanomanuf 2:477–495

    Google Scholar 

  • Li QH, Liang YX, Wan Q, Wang TH (2004) Oxygen sensing characteristics of individual ZnO nanowire transistors. Appl Phys Lett 85:6389

    Article  CAS  ADS  Google Scholar 

  • Mercadelli E, Galassi C, Costa AL, Albonetti S, Sanson A (2008) Sol–gel combustion synthesis of BNBT powders. J Sol-Gel Sci Technol 46:39–45

    Article  CAS  Google Scholar 

  • Murray BJ, Walter EC, Penner RM (2004) Amine vapor sensing with silver mesowires. Nano Lett 4:665–670

    Article  CAS  ADS  Google Scholar 

  • Partridge JG, Brown SA, Dunbar ADF, Kaufmann M, Schott S, Schulze M, Reichel R, Seigert C, Blaikie RJ (2004) Templated-assembly of conducting antimony cluster wires. Nanotechnology 15:1382–1387

    Article  CAS  ADS  Google Scholar 

  • Reed MA, Zhou C, Muller CJ, Burgin TP, Tour JM (1997) Conductance of a molecular junction. Science 278:252–254

    Article  CAS  Google Scholar 

  • Schider G, Krenn JR, Gotschy W, Lamprecht B, Ditlbacher H, Leitner A, Aussenegg FR (2001) Optical properties of Ag and Au nanowire gratings. J Appl Phys 90:3825–3830

    Article  CAS  ADS  Google Scholar 

  • Schmelzer J Jr, Brown SA, Wurl A, Hyslop M, Blaikie RJ (2002) Finite-size effects in the conductivity of cluster assembled nanostructures. Phys Rev Lett 88:226802

    Article  PubMed  ADS  Google Scholar 

  • Tong L, Gattass RR, Ashcom JB, He S, Lou J, Shen M, Maxwell I, Mazur E (2003) Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature 426:816–819

    Article  CAS  PubMed  ADS  Google Scholar 

  • Xu Q, Bao J, Capasso F, Whitesides GM (2006) Surface plasmon resonances of free-standing gold nanowires fabricated by nanoskiving. Angew Chem 118:3713–3717

    Article  Google Scholar 

Download references

Acknowledgement

Funding from department of science and technology (DST), government of India is duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashant Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, P. Trench-template fabrication of indium and silicon nanowires prepared by thermal evaporation process. J Nanopart Res 12, 2473–2480 (2010). https://doi.org/10.1007/s11051-009-9813-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-009-9813-9

Keywords

Navigation