Skip to main content
Log in

Structural, Optical, Ferroelectric and Ferromagnetic Properties of Bi1−xGdxFeO3 Materials

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Bi1−xGdxFeO3 (BGFO) (x = 0.00 ÷ 0.15) materials were prepared by a sol-gel method. The effect of Gd doping on the structural, ferromagnetic, and ferroelectric properties of BiFeO3 (BFO) were analyzed using x-ray diffraction, Raman scattering, energy-dispersive x-ray spectroscopy, ferroelectric hysteresis loop and magnetic hysteresis loop measurements. All samples showed a rhombohedral structure of the perovskite type. The a and c lattice parameters decreased with Gd content, obeying Vegard’s law, from 5.583 to 5.511 Å, and from 13.869 Å to 13.741 Å, respectively. The optical band gap (Eg) also decreased with Gd content, from 2.02 to 1.60 eV at x = 0.00 to x = 0.15, respectively. The ferroelectric and ferromagnetic properties of the BGFO materials were enhanced compared with those of the pure BFO material. Maximum saturation polarization (Ps) and saturation magnetization (Ms) values of 6.88 μC/cm2 and 0.386 emu/g were obtained. We found that the optimum Gd doping content to enhance multiferroic properties of BFO material is in range from x = 0.10 to x = 0.125. The origin of ferromagnetic and ferroelectric properties of BGFO materials were also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Eerenstein, N.D. Mathur, and J.F. Scott, Nature 442, 759 (2006).

    CAS  Google Scholar 

  2. J. van den Brink and D.I. Khomskii, J. Phys. Condens. Matter 20, 434217 (2008).

    Article  Google Scholar 

  3. S.N. Tripathy, B.G. Mishra, M.M. Shirolkar, S. Sen, S.R. Das, D.B. Janes, and D.K. Pradhan, Mater. Chem. Phys. 141, 423 (2013).

    Article  CAS  Google Scholar 

  4. D. Maurya, H. Thota, K.S. Nalwa, and A. Garg, J. Alloys Compd. 477, 780 (2009).

    Article  CAS  Google Scholar 

  5. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, and R. Ramesh, Science 299, 1719 (2003).

    Article  CAS  Google Scholar 

  6. R. Mazumder, P. Sujatha Devi, D. Bhattacharya, P. Choudhury, A. Sen, and M. Raja, Appl. Phys. Lett. 91, 062510 (2007).

    Article  Google Scholar 

  7. I. Sosnowska, T. Peterlin-Neumainer, and E. Steichele, J. Phys. C Solid State Phys. 15, 4835 (1982).

    Article  CAS  Google Scholar 

  8. J. Singh, A. Agarwal, S. Sanghi, T. Bhasin, M. Yadav, U. Bhakar, and O. Singh, Curr. Appl. Phys. 19, 321 (2019).

    Article  Google Scholar 

  9. K.G. Yang, Y.L. Zhang, S.H. Yang, and B. Wang, J. Appl. Phys. 107, 124109 (2010).

    Article  Google Scholar 

  10. C.M. Raghavan, D. Do, J.W. Kim, W.-J. Kim, S.S. Kim, and S. Priya, J. Am. Ceram. Soc. 95, 1933 (2012).

    Article  CAS  Google Scholar 

  11. G.S. Lotey and N.K. Verma, J. Nanopart. Res. 14, 742 (2012).

    Article  Google Scholar 

  12. V.A. Khomchenko, V.V. Shvartsman, P. Borisov, W. Kleemann, D.A. Kiselev, I.K. Bdikin, J.M. Vieira, and A.L. Kholkin, Acta Mater. 57, 5137 (2009).

    Article  CAS  Google Scholar 

  13. R. Guo, L. Fang, W. Dong, F. Zheng, and M. Shen, J. Phys. Chem. C 114, 21390 (2010).

    Article  CAS  Google Scholar 

  14. A.R. Denton and N.W. Ashcroft, Phys. Rev. A 43, 3161 (1991).

    Article  CAS  Google Scholar 

  15. S.K. Pradhan, J. Das, P.P. Rout, V.R. Mohanta, S.K. Das, S. Samantray, D.R. Sahu, J.L. Huang, S. Verma, and B.K. Roul, J. Phys. Chem. Solids 71, 1557 (2010).

    Article  CAS  Google Scholar 

  16. P. Chandra Sati, M. Kumar, and S. Chhoker, Ceram. Int. 41, 3227 (2015).

    Article  CAS  Google Scholar 

  17. Y. Zhu, C. Quan, Y. Ma, Q. Wang, W. Mao, X. Wang, J. Zhang, Y. Min, J. Yang, X.A. Li, and W. Huang, Mater. Sci. Semicond. Process. 57, 178 (2017).

    Article  CAS  Google Scholar 

  18. M. Kumarn, P.C. Sati, S. Chhoker, and V. Sajal, Ceram. Int. 41, 777 (2015).

    Article  Google Scholar 

  19. H. Fukumura, H. Harima, K. Kisoda, M. Tamada, Y. Noguchi, and M. Miyayama, J. Magn. Magn. Mater. 310, 367 (2007).

    Article  Google Scholar 

  20. N.V. Minh and D.V. Thang, J. Alloys Compd. 505, 619 (2010).

    Article  Google Scholar 

  21. Y. Yang, J.Y. Sun, K. Zhu, Y.L. Liu, and L. Wan, J. Appl. Phys. 103, 093532 (2008).

    Article  Google Scholar 

  22. P. Kumar, N. Shankhwar, A. Srinivasan, and M. Kar, J. Appl. Phys. 117, 194103 (2015).

    Article  Google Scholar 

  23. F. Gao, Y. Yuan, K.F. Wang, X.Y. Chen, F. Chen, J.M. Liu, and Z.F. Ren, App. Phys. Lett. 89, 102506 (2006).

    Article  Google Scholar 

  24. M.M. Rhaman, M.A. Matin, M.N. Hossain, F.A. Mozahid, M.A. Hakim, M.H. Rizvi, and M.F. Islam, J. Electron. Mater. 47, 6954 (2018).

    Article  CAS  Google Scholar 

  25. Z. Liu, Y. Qi, and C. Lu, J. Mater. Sci. Mater. Electron. 21, 380 (2010).

    Article  CAS  Google Scholar 

  26. N.V. Minh and D.V. Thang, J. Nonlinear Opt. Phys. 19, 247 (2010).

    Article  Google Scholar 

  27. N. Gao, W. Chen, R. Zhang, J. Zhang, Z. Wu, W. Mao, J. Yang, X.A. Li, and W. Huang, Comput. Theor. Chem. 1084, 36 (2016).

    Article  CAS  Google Scholar 

  28. C. Ederer and N.A. Spaldin, Phys. Rev. B 71, 060401(R) (2005).

    Article  Google Scholar 

  29. H. Naganuma, J. Miura, and S. Okamura, Appl. Phys. Lett. 93, 052901 (2008).

    Article  Google Scholar 

  30. Y. Yang, L. Kang, and H. Li, Ceram. Int. 45, 8017 (2019).

    Article  CAS  Google Scholar 

  31. S. Kumar Srivastav, N.S. Gajbhiye, and A. Banerjee, J. Appl. Phys. 113, 203917 (2013).

    Article  Google Scholar 

  32. A. Jaiswal, R. Das, K. Vivekanand, P.M. Abraham, S. Adyanthaya, and P. Poddar, J. Phys. Chem. C 114, 2108 (2010).

    Article  CAS  Google Scholar 

  33. P. Suresh and S. Srinath, Phys. B 448, 281 (2014).

    Article  CAS  Google Scholar 

  34. V.V. Lazenka, G. Zhang, J. Vanacken, I.I. Makoed, A.F. Ravinski, and V.V. Moshchalkov, J. Phys. D Appl. Phys. 45, 125002 (2012).

    Article  Google Scholar 

  35. S.V. Vijayasundaram, G. Suresh, R.A. Mondal, and R. Kanagadurai, J. Alloys Compd. 658, 726 (2016).

    Article  CAS  Google Scholar 

  36. A. Mukherjee, S. Basu, P.K. Manna, S.M. Yusuf, and M. Pal, J. Alloys Compd. 598, 142 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dao Viet Thang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thang, D.V., Nguyen, V.Q., Hung, N.M. et al. Structural, Optical, Ferroelectric and Ferromagnetic Properties of Bi1−xGdxFeO3 Materials. J. Electron. Mater. 49, 4443–4449 (2020). https://doi.org/10.1007/s11664-020-08158-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08158-y

Keywords

Navigation