Skip to main content
Log in

A Tunable Ultra-Broadband THz Absorber Based on a Phase Change Material

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this paper, by using a kind of phase change material, a tailored ultra-broadband THz metamaterial absorber is realized, which is based on vanadium dioxide (VO2). Compared with the prior works, the tunable absorption bandwidth can be obtained in the proposed tunable phase change material absorber (TPMA), which can be manipulated by the temperature. The absorption of such a TPMA goes beyond 90% in the frequency region 10.28–15.56 THz and its relative bandwidth is 40.9% when the temperature is equal to or larger than 68°C, and excellent frequency detectability also can be observed. However, when the temperature is less than 68°C, the present TPMA can act as a perfect reflector. The absorption also is investigated for oblique incidence, which shows that the proposed TPMA is incident angle-dependent. The relationships between the structure parameters and the features of absorption also are investigated. The distribution of current surface, the electric field and power loss density are used to elucidate the physical mechanism of such a TPMA. In addition, a reconfigurable device can be realized with such a TPMA by tailoring different temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.X. Wang, L.L. Wang, G.Z. Wang, W.Q. Huang, X.F. Li, and X. Zhai, Appl. Phys. Express 7, 082601 (2014).

    Article  Google Scholar 

  2. N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, and W.J. Padilla, Phys. Rev. Lett. 100, 207402 (2008).

    Article  CAS  Google Scholar 

  3. M. Li, S.Q. Xiao, Y.Y. Bai, and B.Z. Wang, IEEE Antenn. Wirel. Propag. Lett. 11, 748 (2012).

    Article  Google Scholar 

  4. F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, Appl. Phys. Lett. 100, 103506 (2012).

    Article  Google Scholar 

  5. J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, Appl. Phys. Lett. 105, 4773 (2014).

    Google Scholar 

  6. T. Han, W. Guo, and Y. Liu, Opt. Express 24, 20586 (2016).

    Article  Google Scholar 

  7. B. Xu, C. Gu, Z. Li, and Z. Niu, Opt. Express 21, 23803 (2013).

    Article  CAS  Google Scholar 

  8. H.F. Zhang, H. Zhang, Y. Yao, J. Yang, and J.X. Liu, IEEE Photonics J. 10, 5700610 (2018).

  9. R.W. Ziolkowski, IEEE Trans. Antennas Propag. 56, 691 (2008).

    Article  Google Scholar 

  10. R.W. Ziolkowski, P. Jin, and C.C. Lin, Proc. IEEE 99, 1720 (2011).

    Article  Google Scholar 

  11. E. Verney, B. Sauviac, and C.R. Simovski, Phys. Lett. A 331, 244 (2004).

    Article  CAS  Google Scholar 

  12. K. Aydin, I. Bulu, and E. Ozbay, Opt. Express 13, 8753 (2005).

    Article  Google Scholar 

  13. W.S. Yuan and Y.Z. Cheng, Appl. Phys. A 117, 1915 (2014).

    Article  CAS  Google Scholar 

  14. T. Cao, C. Wei, R.E. Simpson, L. Zhang, and M.J. Cryan, Opt. Mater. Express 3, 1101 (2013).

    Article  Google Scholar 

  15. M. Hong, S.A. Maier, X. Luo, X. Li, and Y. Chen, Photonics Res. 3, 54 (2015).

    Article  Google Scholar 

  16. X. Tian and Z.Y. Li, Photonics Res. 4, 146 (2016).

    Article  CAS  Google Scholar 

  17. X. Tian and Z.Y. Li, Plasmonics 13, 1393 (2018).

    Article  CAS  Google Scholar 

  18. Z. Yang and S. Ramanathan, IEEE Photonics J. 7, 1 (2015).

    Google Scholar 

  19. H. Kocer, S. Butun, B. Banar, K. Wang, S. Tongay, J. Wu, and K. Aydin, Appl. Phys. Lett. 106, 161104 (2015).

    Article  Google Scholar 

  20. R. Naorem, G. Dayal, S.A. Ramakrishna, B. Rajeswaranb, and A.M. Umarjib, Opt. Commun. 346, 154 (2015).

    Article  CAS  Google Scholar 

  21. J. Schoiswohl, G. Kresse, S. Surnev, M. Sock, M.G. Ramsey, and F.P. Netzer, Phys. Rev. Lett. 92, 206103 (2004).

    Article  CAS  Google Scholar 

  22. A. Cavalleri, C. Tóth, C.W. Siders, J.A. Squier, F. Ráksi, P. Forget, and J.C. Kieffer, Phys. Rev. Lett. 87, 237401 (2001).

    Article  CAS  Google Scholar 

  23. A. Hendaoui, N. Émond, S. Dorval, M. Chakera, and E. Haddadb, Sol. Energy Mater. Sol. C 117, 494 (2013).

    Article  CAS  Google Scholar 

  24. W. Li, S. Chang, X. Wang, L. Lin, and J. Bai, Optoelectron. Lett. 10, 180 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-feng Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, Xr., Zhang, Hf. & Dao, Rn. A Tunable Ultra-Broadband THz Absorber Based on a Phase Change Material. J. Electron. Mater. 48, 7040–7047 (2019). https://doi.org/10.1007/s11664-019-07511-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07511-0

Keywords

Navigation