Skip to main content
Log in

A thermally tunable terahertz bandpass filter with insulator-metal phase transition of VO2 thin film

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

A terahertz bandpass filter with the sandwich structure consisting of thermally tunable vanadium dioxide (VO2) thin film, silica substrate and subwavelength rectangular Cu hole arrays is designed and theoretically analyzed. The results show that the transmittance of the filter can be actively tuned by controlling the temperature of VO2, the narrow band terahertz (THz) waves with the transmittance from 85.2% to 10.5% can be well selected at the frequency of 1.25 THz when the temperature changes from 50 °C to 80 °C, and the maximum modulation depth of this terahertz bandpass filter can achieve 74.7%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Fan, W. H. Gu, X. H. Wang and S. J. Chang, Appl. Phys. Lett. 102, 121113 (2013).

    Article  ADS  Google Scholar 

  2. ZHANG Hui, BAI Jin-jun, GUO Peng, WANG Xiang-hui and CHANG Sheng-jiang, Optoelectronics Letters 5, 169 (2009).

    Article  ADS  MATH  Google Scholar 

  3. H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor and R. D. Averitt, Nature 444, 597 (2006).

    Article  ADS  Google Scholar 

  4. WANG Chang-hui, KUANG Deng-feng, CHANG Sheng-jiang and LIN Lie, Optoelectronics Letters 9, 266 (2013).

    Article  ADS  Google Scholar 

  5. X. Xiao, Y. Li, B. Hou, B. Zhou and W. Wen, Opt. Lett. 37, 3594 (2012).

    Article  ADS  Google Scholar 

  6. W. Li, D. F. Kuang, F. Fan, S. J. Chang and L. Lin, Appl. Opt. 51, 7098 (2012).

    Article  ADS  Google Scholar 

  7. Y. S. Kim, S.-Y. Lin, H.-Y. Wu and R.-P. Pan, J. Appl. Phys. 109, 123111 (2011).

    Article  ADS  Google Scholar 

  8. N. Vieweg, N. Born, I. Al-Naib and M. Koch, J. Infrared Milli. Terahz. Waves 33, 327 (2012).

    Article  Google Scholar 

  9. M. Hochberg, T. B. Jones, G. X. Wang, M. Shearn, K. Harvard, J. D. Luo, B. Q. Chen, Z. W. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton and A. Scherer, Nat. Mater. 5, 703 (2006).

    Article  ADS  Google Scholar 

  10. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemis, T. Thio and P. A. Wolff, Nature 391, 667 (1998).

    Article  ADS  Google Scholar 

  11. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemis, T. Thio and D. E. Grupp, Phys. Rev. B 58, 6779 (1998).

    Article  ADS  Google Scholar 

  12. D. X. Qu, D. Grischkowsky and W. L. Zhang, Opt. Lett. 29, 896 (2004).

    Article  ADS  Google Scholar 

  13. C. Janke, J. G. Rivas, P. H. Bolivar and H. Kurz, Opt. Lett. 30, 2357 (2005).

    Article  ADS  Google Scholar 

  14. Q. Y. Wen, H. W. Zhang, Q. H. Yang, Y. S. Xie, K. Chen and Y. L. Liu, Appl. Phys. Lett. 97, 021111 (2010).

    Article  ADS  Google Scholar 

  15. C. R. Cho, S. I. Cho, S. Vadim, R. Jung and I. Yoo, Thin Solid Films 495, 375 (2006).

    Article  ADS  Google Scholar 

  16. F. Fan, W. H. Gu, S. Chen, X. H. Wang and S. H. Chang, Opt. Lett. 38, 1582 (2013).

    Article  ADS  Google Scholar 

  17. T. Yao, X. D. Zhang, Z. H. Sun, S. J. Liu, Y. Y. Huang, Y. Xie, C. Z. Wu, X. Yuan, W. Q. Zhang, Z. Y. Wu, G. G. Pan, F. C. Hu, L. H. Wu, Q. H. Liu and S. Q. Wei, Phys. Rev. Lett. 105, 226405 (2010).

    Article  ADS  Google Scholar 

  18. Q. W. Shi, W. X. Huang, Y. X. Zhang, J. Z. Yan, Y. B. Zhang, M. Mao, Y. Zhang and M. J. Tu, ACS Appl. Mater. Interfaces 3, 3523 (2011).

    Article  Google Scholar 

  19. P. U. Jepsen, B. M. Fischer, A. Thoman, H. Helm, J. Y. Suh, R. Lopez and R. F. Haglund, Phys. Rev. B 74, 205103 (2006).

    Article  ADS  Google Scholar 

  20. P. Mandal, A. Speck, C. Ko and S. Ramanathan, Opt. Lett. 36, 1927 (2011).

    Article  Google Scholar 

  21. D. A. G. Bruggeman, Ann. Phys. 24, 636 (1935).

    Article  Google Scholar 

  22. H. S. Choi, J. S. Ahn, J. H. Jung, T. W. Noh and D. H. Kim, Phys. Rev. B 54, 4621 (1996).

    Article  ADS  Google Scholar 

  23. M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman and F. A. Hegmann, Phys. Rev. B 76, 125408 (2007).

    Article  ADS  Google Scholar 

  24. M. Naftaly and R. E. Miles, J. Appl. Phys. 102, 043517 (2007).

    Article  ADS  Google Scholar 

  25. N. Laman and D. Grischkowsky, Appl. Phys. Lett. 90, 122115 (2007).

    Article  ADS  Google Scholar 

  26. D. Qu, D. Grischkowsky and W. Zhang, Opt. Lett. 29, 896 (2004).

    Article  ADS  Google Scholar 

  27. H. J. Lezec and T. Thio, Opt. Exp. 12, 3629 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-jiang Chang  (常胜江).

Additional information

This work has been supported by the National High Technology Research and Development Program of China (No.2011AA010205), the National Natural Science Foundation of China (Nos.61171027 and 10904076), and the Tianjin City High School Science & Technology Fund Planning Project (No. 20120706).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Chang, Sj., Wang, Xh. et al. A thermally tunable terahertz bandpass filter with insulator-metal phase transition of VO2 thin film. Optoelectron. Lett. 10, 180–183 (2014). https://doi.org/10.1007/s11801-014-3236-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-014-3236-2

Keywords

Navigation