Skip to main content
Log in

A Tunable Double-Decker Ultra-Broadband THz Absorber Based on a Phase Change Material

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, a tunable double-decker ultra-broadband THz absorber is proposed based on a phase change material, which is vanadium dioxide (VO2). The tailored tunable double-decker phase change material absorber (TDPA) can be regulated by the temperature. The absorption of such TDPA spans from 7.36 to 16.67 THz when the temperature is equal to 350 K for TE wave, which is over 90% and its relative bandwidth is 77.4% under the circumstances. But such a TDPA can be regarded as a perfect reflector when the temperature is 300 K. When the incident angle is oblique, the absorption also is investigated, which shows that the presented TDPA is incident-angle-independent, when the incident angle is less than 40°. The relationship between the absorption features and the structure parameters is also discussed. The distributions of current surface, the electric fields, and the power loss densities are given to expound the physical mechanism of such a TDPA. Besides, by setting different temperature, a reconfigurable device can be realized in the proposed TDPA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wang BX, Wang LL, Wang GZ, Huang WQ, Li XF, Zhai X (2014) A simple design of a broadband, polarization-insensitive, and low-conductivity alloy metamaterial absorber. Appl Phys Express 7(7):082601

    Article  CAS  Google Scholar 

  2. Grant J, Ma Y, Saha S, Lok LB, Khalid A, DR S (2011) Cumming polarization insensitive terahertz metamaterial absorber. Opt Lett 36(8):1524–1526

    Article  CAS  Google Scholar 

  3. Li S, Gao J, Cao X, Li W, Zhang Z, Zhang D (2014) Wideband, thin and polarization-insensitive perfect absorber based the double octagonal rings metamaterials and lumped resistances. J Appl Phys 116(4):043710

    Article  CAS  Google Scholar 

  4. Sun J, Liu L, Dong G, Zhou J (2011) An extremely broad band metamaterial absorber based on destructive interference. Opt Express 19(22):21155–21162

    Article  CAS  Google Scholar 

  5. Liu S, Chen H, Cui TJ (2015) A broadband terahertz absorber using multi-layer stacked bars. Appl Phys Lett 106(15):151601

    Article  CAS  Google Scholar 

  6. Ji JK, Kim GH, Seong WM (2010) Bandwidth enhancement of metamaterial antennas based on composite right/left-handed transmission line. IEEE Antenn Wirel Pr 9(1):36–39

    Article  Google Scholar 

  7. Volakis JL, Sertel K (2011) Narrowband and wideband metamaterial antennas based on degenerate band edge and magnetic photonic crystals. P. IEEE 99(10):1732–1745

    Article  Google Scholar 

  8. Soric JC, Engheta N, Maci S, Alu A (2013) Omnidirectional metamaterial antennas based on ε -near-zero channel matching. IEEE T Antenn Propag 61(1):33–44

    Article  Google Scholar 

  9. Lin XQ, Cui TJ, Chin JY, Yang XM, Cheng Q, Liu RP (2008) Controlling electromagnetic waves using tunable gradient dielectric metamaterial lens. Appl Phys Lett 92(13):4184

    Google Scholar 

  10. Savin A, Steigmann R, Bruma A, Šturm R (2015) An electromagnetic sensor with a metamaterial lens for nondestructive evaluation of composite materials. Sensors 15(7):15903–15920

    Article  Google Scholar 

  11. Pu TL, Huang KM, Wang B, Yang Y (2010) Application of micro-genetic algorithm to the design of matched high gain patch antenna with zero-refractive-index metamaterial lens. J Electromagnet Wave 24(8–9):1207–1217

    Article  Google Scholar 

  12. Tao H, Bingham CM, Pilon D, Fan K, Strikwerda AC, Shrekenhamer D, Padilla WJ, Zhang X, Averitt RD (2010) A dual band terahertz metamaterial absorber. J Phys D Appl Phys 43(22):225102

    Article  CAS  Google Scholar 

  13. Ding F, Cui Y, Ge X, Jin Y, He S (2012) Ultra-broadband microwave metamaterial absorber. Appl Phys Lett 100(10):103506–103506–4

    Article  CAS  Google Scholar 

  14. Wakatsuchi H, Greedy S, Christopoulos C, Paul J (2010) Customised broadband metamaterial absorbers for arbitrary polarization. Opt Express 18(21):22187–22198

    Article  CAS  Google Scholar 

  15. Zhao J, Cheng Q, Chen J, Qi MQ, Jiang WX, Cui TJ (2013) A tunable metamaterial absorber using varactor diodes. New J Phys 15(4):043049

    Article  CAS  Google Scholar 

  16. Shrekenhamer D, Chen WC, Padilla WJ (2013) Liquid crystal tunable metamaterial absorber. Phys Rev Lett 110(17):177403

    Article  CAS  Google Scholar 

  17. Wang BX, Wang LL, Wang GZ, Huang WQ, Li XF, Zhai X (2014) Frequency continuous tunable terahertz metamaterial absorber. J Lightwave Technol 32(6):1183–1189

    Article  Google Scholar 

  18. Wen QY, Zhang HW, Yang QH, Chen Z, Long Y, Jing YL, Lin Y, Zhang PX (2012) A tunable hybrid metamaterial absorber based on vanadium oxide films. J Phys D Appl Phys 45(23):235106–235110(5)

    Article  CAS  Google Scholar 

  19. Liu ZM, Li Y, Zhang J, Huang YQ, Li ZP, Pei JH, Fang BY, Wang XH, Xiao X (2017) A tunable metamaterial absorber based on VO2/W multilayer structure. IEEE Photonic Tech Lett PP(99):1–1

  20. Kats MA, Sharma D, Lin J, Genevet P, Blanchard R, Yang Z, Qazilbash MM, Basov DN, Ramanathan S, Capasso F (2012) Ultra-thin perfect absorber employing a tunable phase change material. Appl Phys Lett 101(22):273-R

    Article  CAS  Google Scholar 

  21. Tian X, Li Z (2017) An optically-triggered switchable mid-infrared perfect absorber based on phase-change material of vanadium dioxide. Plasmonics 13(4):1393–1402

    Article  CAS  Google Scholar 

  22. Peng H, Ji C, Lu L, Li Z, Li H, Wang J, Wu Z, Jiang Y, Xu J, Liu Z (2017) Broadband planar multilayered absorbers tuned by VO2 phase transition. J Appl Phys 122(5):053106

    Article  CAS  Google Scholar 

  23. Chen YJ, Li X, Luo XG, Maier SA, Hong MH (2015) Tunable near-infrared plasmonic perfect absorber based on phase-change materials. Photonics Res 3(3):54–57

    Article  CAS  Google Scholar 

  24. Tian X, Li ZY (2016) Visible-near infrared ultra-broadband polarization-independent metamaterial perfect absorber involving phase-change materials. Photonics Res 4(4):146

    Article  CAS  Google Scholar 

  25. Liu Z, Zhao M, Gao J, Li Y, Jiang S (2017) Thermally tunable broadband omnidirectional and polarization-independent super absorber using phase change material VO2. Results Phys 7:4222–4225

    Article  Google Scholar 

  26. Zhao Y, Huang QP, Cai HL, Lin XX, Lua YL (2018) A broadband and switchable VO2-based perfect absorber at the THz frequency. Opt Commun 426:443–449

    Article  CAS  Google Scholar 

  27. Feng Q, Pu MB, Hu CG, Luo XG (2012) Engineering the dispersion of metamaterial surface for broadband infrared absorption. Opt Lett 37(11):2133–2135

    Article  CAS  Google Scholar 

  28. Guo YH, Yan LS, Pan W, Luo B, Luo XG (2014) Ultra-broadband terahertz absorbers based on 4× 4 cascaded metal-dielectric pairs. Plasmonics 9(4):951–957

    Article  CAS  Google Scholar 

  29. Pu MB, Hu CG, Wang M, Huang C, Zhao ZY, Wang CT, Feng Q, Luo XG (2011) Design principles for infrared wide-angle perfect absorber based on plasmonic structure. Opt Express 19(18):17413–17420

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Open Research Program in China’s State Key Laboratory of Millimeter Waves (Grant No.K201927).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Feng Zhang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, XR., Dao, RN. & Zhang, HF. A Tunable Double-Decker Ultra-Broadband THz Absorber Based on a Phase Change Material. Plasmonics 14, 1233–1241 (2019). https://doi.org/10.1007/s11468-019-00912-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-019-00912-1

Keywords

Navigation