Skip to main content
Log in

Optical, Magnetic and Gas Sensing Properties of LaFeO3 Nanoparticles Synthesized by Different Chemical Methods

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

LaFeO3 nanoparticles were synthesized by different chemical procedures, i.e., microwave-thermal treatment method (MTTM), hydrothermal method (HTM) and sol–gel method (SGM), by using metal nitrates as La- and Fe-precursors. The synthesized nanoparticles were calcined at various temperature from 450°C to 1000°C. SEM analysis of samples synthesized by MTTM and SGM highlighted the formation of uniform spherical-like nanoparticles while those obtained by HTM were a combination of spherical particles and nanorods. X-ray diffraction patterns of nanocrystals confirmed that these nanoparticles are formed by crystalline LaFeO3 in the orthorhombic structure. The synthesized LaFeO3 were further investigated for analyzing their optical, magnetic and gas sensing behaviors. Band gap values for LaFeO3 by MTTM and HTM were in the range 2.07–2.41 eV and 1.57–1.94 eV, respectively, for the samples annealed at growing temperature, whereas vibrating sample magnetometer analysis demonstrated their weak ferromagnetic behavior. LaFeO3 synthesized by SGM showed interesting sensing properties for monitoring O2 and ethanol in ambient air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Arendt, A. Maione, A. Klisinska, O. Sanz, M. Montes, S. Suarez, J. Blanco, and P. Ruiz, Appl. Catal. A 339, 1 (2008).

    Article  Google Scholar 

  2. C.S. Cheng, L. Zhang, Y.J. Zhang, and S.P. Jiang, Solid State Ionics 179, 282 (2008).

    Article  Google Scholar 

  3. S. Pathak, J. Kuebler, A. Payzant, and N. Orlovskaya, J. Power Sources 195, 3612 (2010).

    Article  Google Scholar 

  4. M.B. Bellakki, C. Madhu, T. Greindl, S. Kohli, P. McCurdy, and V. Manivannan, Rare Met. 29, 491 (2010).

    Article  Google Scholar 

  5. W. Wei, S. Guo, C. Chen, L. Sun, Y. Chen, W. Guo, and S. Ruan, J Alloys Compd. 695, 1122 (2017).

    Article  Google Scholar 

  6. M.M. Rahman, M.M. Alam, A.M. Asiri, and M.A. Islam, RSC Adv. 7, 22627 (2017).

    Article  Google Scholar 

  7. T. Van Dang, N. Duc Hoa, N. Van Duy, and N. Van Hieu, ACS Appl. Mater. Interfaces. 8, 4828 (2016).

    Article  Google Scholar 

  8. N. Van Hoang, C.M. Hung, N.D. Hoa, N. Van Duy, I. Park, and N. Van Hieu, Sens. Actuators, B 282, 876 (2019).

    Article  Google Scholar 

  9. C.M. Hung, H.V. Phuong, N. Van Duy, N.D. Hoa, and N. Van Hieu, J. Alloys Compd. 765, 1237 (2018).

    Article  Google Scholar 

  10. L. Tepech-Carrillo, A. Escobedo-Morales, A. Pérez-Centeno, E. Chigo-Anota, J.F. Sánchez-Ramírez, E. López-Apreza, and J. Gutiérrez-Gutiérrez, J. Nanomaterials 2016, Art. ID 6917950, 7 p.

  11. S. Li, L. Jing, W. Fu, L. Yang, B. Xin, and H. Fu, Mater. Res. Bull. 42, 203 (2007).

    Article  Google Scholar 

  12. P. Tang, Y. Tong, H. Chen, F. Cao, and G. Pan, Curr. Appl. Phys. 13, 340 (2013).

    Article  Google Scholar 

  13. P.V. Gosavi and R.B. Biniwale, Mater. Chem. Phys. 119, 324 (2010).

    Article  Google Scholar 

  14. M. Popa and J. Frantti, M. Kakihana. Solid State Ionics 154–155, 135 (2002).

    Article  Google Scholar 

  15. M.G. Naseri, M. MajlesAra, E. Saion, and A. Shaari, J. Magn. Magn. Mater. 350, 141 (2014).

    Article  Google Scholar 

  16. M.G. Naseri, M.K. Halimah, A. Dehzangi, A. Kamalianfar, and E. Saion, J. Phys. Chem. Solids 75, 315 (2014).

    Article  Google Scholar 

  17. M.G. Naseri, E. Saion, M. Hashim, A. Shaari, and H. Ahangar, Solid State Commun. 151, 1031 (2011).

    Article  Google Scholar 

  18. A. Mirzaei and G. Neri, Sens. Actuators, B 237, 749 (2016).

    Article  Google Scholar 

  19. S. Nagai, N. Fujiwara, M. Asahi, S. Yamazaki, Z. Siroma, T. Ioroi, and J. Asian, Ceram. Soc. 2, 329 (2014).

    Google Scholar 

  20. P. Tang, Y. Tong, H. Chen, F. Cao, and G. Pan, Curr. Appl. Phys. 13, 340 (2013).

    Article  Google Scholar 

  21. W. Lee, H.J. Yun, and J. Yoon, J. Alloys Compd. 583, 320 (2014).

    Article  Google Scholar 

  22. T. Anil, N.K. Lakshun, and R.K.C. James, Int. J. Chem. Tech. Res. 6, 3353 (2014).

    Google Scholar 

  23. F. Bidrawn, S. Lee, J.M. Vohs, and R.J. Gorte, J. Electrochem. Soc. 155, 660 (2008).

    Article  Google Scholar 

  24. K.M. Parida, K.H. Reddy, S. Martha, D.P. Das, and N. Biswal, Int. J. Hyd. Energy 35, 12161 (2010).

    Article  Google Scholar 

  25. A.B. Djurišića, Y.H. Leung, and K.H. Tam, Appl. Phys. Lett. 88, 103 (2006).

    Google Scholar 

  26. R. Mazumder, S. Ghosh, P. Mondal, D. Bhattacharya, S. Dasgupta, N. Das, and A. Sen, J. Appl. Phys. 100, 1 (2006).

    Article  Google Scholar 

  27. F. Gao, Y. Yuan, K.F. Wang, X.Y. Chen, F. Chen, and J.M. Liu, Appl. Phys. Lett. 89, 102506 (2006).

    Article  Google Scholar 

  28. R. Maiti, S. Basu, and D. Chakravorty, J. Magn. Magn. Mater. 321, 3274 (2009).

    Article  Google Scholar 

  29. J.-S. Zhou, J.A. Alonso, V. Pomjakushin, J.B. Goodenough, Y. Ren, J.-Q. Yan, and J.-G. Cheng, RCrO3. Phys. Rev. B 81, 214115 (2010).

    Article  Google Scholar 

  30. N.N. Toan, S. Saukko, and V. Lantto, Phys. B Cond. Matter 327, 279 (2003).

    Article  Google Scholar 

  31. P. Song, H. Quin, L. Zhang, K. An, Z. Lin, J. Hu, and M. Jiang, Sens. Actuators, B 104, 312 (2005).

    Article  Google Scholar 

  32. E.N. Armstrong, T. Striker, V. Ramaswamy, J.A. Ruud, and E.D. Wachsman, Sens. Actuators, B 158, 159 (2011).

    Article  Google Scholar 

  33. P. Song, Q. Wang, Z. Zhang, and Z. Yang, Sens. Actuators, B 147, 248 (2010).

    Article  Google Scholar 

  34. I. Jaouali, H. Hamrouni, N. Moussa, M.F. Nsib, M.A. Centeno, A. Bonavita, G. Neri, and S.G. Leonardi, Ceram. Int. 44, 4183 (2018).

    Article  Google Scholar 

  35. N. Lavanya, C. Sekar, N. Donato, S. G. Leonardi, and G. Neri, in IEEE International Symposium on Medical Measurements & Applications (MeMeA), IEEE, Rome, Italy (2018). https://doi.org/10.1109/MeMeA.2018.8438776.

  36. A. Mirzaei, S.G. Leonardi, and G. Neri, Ceram. Int. 42, 15119 (2016).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Science Research and Technology of Iran under the FRGS grant, Malayer University of Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Naseri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anajafi, Z., Naseri, M. & Neri, G. Optical, Magnetic and Gas Sensing Properties of LaFeO3 Nanoparticles Synthesized by Different Chemical Methods. J. Electron. Mater. 48, 6503–6511 (2019). https://doi.org/10.1007/s11664-019-07436-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07436-8

Keywords

Navigation