Skip to main content
Log in

Highly Sensitive Fluorescence Assay for Glucose Using Amine-Terminated Silicon Quantum Dots As a Non-enzymatic Bioprobe

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This work presents a simple, economic and green technique for functionalizing fluorescent silicon quantum dots (Si QDs) as a bioprobe to measure blood glucose levels. The functionalized Si QDs are synthesized by adding 3-aminopropyltriethoxysilane to a colloidal solution of Si QDs, freshly prepared by laser ablation of a silicon target in distilled water. The amine-terminated surface of Si QDs is confirmed using Fourier transform infrared spectroscopy, energy dispersive x-ray spectroscopy and UV–visible absorption spectroscopy. The photoluminescence of the colloid exhibits high photo-stability and good reproducibility making it a good candidate for fluorescent probes in biosensor studies. We have investigated the use of such functionalized Si QDs as a probe for fluorescent glucose detection application based on its effective fluorescence quenching by hydrogen peroxide, which is produced from glucose. The room temperature fluorescent glucose sensor, based on amine-functionalized Si QDs, gave a detection limit of 0.97 μM and a linear range from 20 to 700 μM. This non-enzymatic fluorescent biosensor system shows high sensitivity, excellent selectivity and extreme stability toward glucose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Kim, A.S. Campbell, and J. Wang, Talanta 177, 163 (2018).

    Article  Google Scholar 

  2. Y. Yi, J. Deng, Y. Zhang, H. Li, and S. Yao, Chem. Commun. 49, 612 (2013).

    Article  Google Scholar 

  3. M. Amatatongchai, W. Sroysee, S. Chairam, and D. Nacapricha, Talanta 166, 420 (2017).

    Article  Google Scholar 

  4. X. Cheng, L. Huang, X. Yang, A.A. Elzatahry, A. Alghamdi, and Y. Deng, J. Colloid Interface Sci. 535, 425 (2019).

    Article  Google Scholar 

  5. H.Y. Lee, J.J. Lee, J. Park, and S.B. Park, Chem. Eur. J. 17, 143 (2011).

    Article  Google Scholar 

  6. L. Cao, J. Ye, L. Tong, and B. Tang, Chem. Eur. J. 14, 9633 (2008).

    Article  Google Scholar 

  7. M. Shehab, S. Ebrahim, and M. Soliman, J. Lumin. 184, 110 (2017).

    Article  Google Scholar 

  8. M. Rodio, R. Brescia, A. Diaspro, and R. Intartaglia, J. Colloid Interface Sci. 465, 242 (2016).

    Article  Google Scholar 

  9. M. Taheri, F. Hajiesmaeilbaigi, and A. Motamedi, Thin Solid Films 519, 7785 (2011).

    Article  Google Scholar 

  10. M. Taheri, F. Hajiesmaeilbaigi, A. Motamedi, and Y. Golian, Laser Phys. 25, 065901 (2015).

    Article  Google Scholar 

  11. M. Taheri, Laser Phys. 28, 125401 (2018).

    Article  Google Scholar 

  12. X. Li, Y. He, and M.T. Swihart, Langmuir 20, 4720 (2004).

    Article  Google Scholar 

  13. D. Tan, Z. Ma, B. Xu, Y. Dai, G. Ma, M. He, Z. Jin, and J. Qiu, Phys. Chem. Chem. Phys. 13, 20255 (2011).

    Article  Google Scholar 

  14. S. Chandra, G. Beaune, N. Shirahata, and F.M. Winnik, J. Mater. Chem. B 5, 1363 (2017).

    Article  Google Scholar 

  15. W. Wu, H. Hao, Y. Zhang, J. Li, J. Wang, and W. Shen, Nanotechnology 29, 025709 (2018).

    Article  Google Scholar 

  16. S. Godefroo, M. Hayne, M. Jivanescu, A. Stesmans, M. Zacharias, O. Lebedev, G. Van Tendeloo, and V.V. Moshchalkov, Nat. Nanotechnol. 3, 174 (2008).

    Article  Google Scholar 

  17. Y. Xu and Y. Han, Appl. Phys. A 117, 1557 (2014).

    Article  Google Scholar 

  18. J. Wang, J. Guo, and J. Chen, Sensors 17, 2396 (2017).

    Article  Google Scholar 

  19. J. Zou, R.K. Baldwin, K.A. Pettigrew, and S.M. Kauzlarich, Nano Lett. 4, 1181 (2004).

    Article  Google Scholar 

  20. M. Taheri, Z. Feizabadi, S. Jafari, and N. Mansour, J. Electron. Mater. 47, 7232 (2018).

    Article  Google Scholar 

  21. H.H. Mai, V.T. Pham, V.T. Nguyen, C.D. Sai, and C.H. Hoang, J. Electron. Mater. 46, 3714 (2017).

    Article  Google Scholar 

  22. C. Wang, S. Shu, Y. Yao, and Q. Song, RSC Adv. 5, 101599 (2015).

    Article  Google Scholar 

  23. Z.F. Gao, A.Y. Ogbe, E.E. Sann, X. Wang, and F. Xia, Talanta 180, 12 (2018).

    Article  Google Scholar 

  24. M. Hu, J. Tian, H.-T. Lu, L.-X. Weng, and L.-H. Wang, Talanta 82, 997 (2010).

    Article  Google Scholar 

  25. C. Chen, Y. Zhang, Z. Zhang, R. He, and Y. Chen, Anal. Lett. 51, 2895 (2018).

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Saeed Javadi Anaghizi in Center Laboratory of the Shahid Beheshti University for providing EDX analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Taheri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taheri, M., Mansour, N. Highly Sensitive Fluorescence Assay for Glucose Using Amine-Terminated Silicon Quantum Dots As a Non-enzymatic Bioprobe. J. Electron. Mater. 48, 5875–5882 (2019). https://doi.org/10.1007/s11664-019-07368-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07368-3

Keywords

Navigation