Skip to main content
Log in

Effects of natural oxidation on the photoluminescence properties of Si nanocrystals prepared by pulsed laser ablation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, Si nanocrystals (Si-NCs) have been prepared by pulsed laser ablation technique in dichloromethane, and the microstructure and photoluminescence (PL) properties of the Si-NCs before and after natural oxidation were investigated. Transmission electron microscopy and Raman results show that the average diameter of the Si-NCs is 2.42 nm in the dichloromethane solution. Blue–violet PL with a lifetime of 4.6 ns is observed at room temperature, and the PL peak shifts toward longer wavelength with the red shift of excitation wavelength. The PL excitation spectrum indicates that the bandgap of the Si-NCs in solution is 2.64 eV, which confirms that the blue–violet PL originates from interband transition of Si-NCs caused by quantum confinement effect. The PL peak red shifts to 607 nm after natural oxidation, and the peak lifetime of which is slow down to 13.1 μs. The fixed PL peak excited by different wavelengths and the slow PL decay time indicate that interface defects become the main PL mechanism after natural oxidation. The results will add new information for understanding the PL mechanism of Si-NCs in different environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A.G. Cullis, L.T. Canham, Nature 353, 335 (1991)

    Article  ADS  Google Scholar 

  2. G. Conibeer, M.A. Green, E.C. Cho et al., Thin Solid Films 516, 6748 (2008)

    Article  ADS  Google Scholar 

  3. K. Fujioka, M. Hiruoka, K. Sato et al., Nanotechnology 19, 415102 (2008)

    Article  Google Scholar 

  4. A.M. Hartel, D. Hiller, S. Gutsch et al., Thin Solid Films 520, 121 (2011)

    Article  ADS  Google Scholar 

  5. X.J. Hao, A.P. Podhorodecki, Y.S. Shen et al., Nanotechnology 20, 485703 (2009)

    Article  Google Scholar 

  6. J. Zhu, T. Li, H. Chen et al., J. Mater. Sci. 49, 4349 (2014)

    Article  ADS  Google Scholar 

  7. K. Abderrafi, R. García-Calzada, M.B. Gongalsky et al., J. Phys. Chem. C 115, 5147 (2011)

    Article  Google Scholar 

  8. H. Zeng, X.W. Du, S.C. Singh et al., Adv. Funct. Mater. 22, 1333 (2012)

    Article  Google Scholar 

  9. N. Mansour, A. Momeni, R. Karimzadeh et al., Phys. Scr. 87, 035701 (2013)

    Article  ADS  Google Scholar 

  10. N. Mansour, A. Momeni, R. Karimzadeh et al., Opt. Mater. Express 2, 740 (2012)

    Article  Google Scholar 

  11. P.G. Kuzmin, G.A. Shafeev, V.V. Bukin et al., J. Phys. Chem. C 114, 15266 (2010)

    Article  Google Scholar 

  12. K. Dohnalová, A.N. Poddubny, A.A. Prokofiev et al., Light Sci. Appl. 2, e47 (2013)

    Article  Google Scholar 

  13. M.V. Wolkin, J. Jorne, P.M. Fauchet et al., Phys. Rev. Lett. 82, 197 (1999)

    Article  ADS  Google Scholar 

  14. S. Alkis, A.K. Okyay, B. Ortaç, J. Phys. Chem. C 116, 3432 (2012)

    Article  Google Scholar 

  15. D.V. Tsu, G. Lucovsky, B.N. Davidson et al., Phys. Rev. B 40, 1795 (1989)

    Article  ADS  Google Scholar 

  16. D.H. Feng, Z.Z. Xu, T.Q. Jia et al., Phys. Rev. B 68, 035334 (2003)

    Article  ADS  Google Scholar 

  17. X.L. Wu, J.Y. Fan, T. Qiu et al., Phys. Rev. Lett. 94, 026102 (2005)

    Article  ADS  Google Scholar 

  18. D. Timmerman, J. Valenta, K. Dohnalová et al., Nat. Nanotech. 6, 710 (2011)

    Article  ADS  Google Scholar 

  19. M. Ben-Chorin, B. Averboukh, D. Kovalev et al., Phys. Rev. Lett. 77, 763 (1996)

    Article  ADS  Google Scholar 

  20. L. Brus, J. Phys. Chem. 90, 2555 (1986)

    Article  Google Scholar 

  21. J.R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd edn. (Springer, Berlin, 2006)

    Book  Google Scholar 

  22. A. Brewer, K. Von Haeften, Appl. Phys. Lett. 94, 261102 (2009)

    Article  ADS  Google Scholar 

  23. W. De Boer, D. Timmerman, K. Dohnalova et al., Nat. Nanotechnol. 5, 878 (2010)

    Article  ADS  Google Scholar 

  24. M.L. Brongersma, P.G. Kik, A. Polman et al., Appl. Phys. Lett. 76, 351 (2000)

    Article  ADS  Google Scholar 

  25. R. Chen, J. Lumin. 102, 510 (2003)

    Article  Google Scholar 

  26. D. Kovalev, M. Fujii, Adv. Mat. 17, 2531 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

This research is financially supported by National Natural Science Foundation of China (No. 51308212), the National Key Technology R&D Program (No. 2011BAI02B03), and the “Fundamental Research Funds for the Central Universities” (No. 2014MS167).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanmei Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Han, Y. Effects of natural oxidation on the photoluminescence properties of Si nanocrystals prepared by pulsed laser ablation. Appl. Phys. A 117, 1557–1562 (2014). https://doi.org/10.1007/s00339-014-8593-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8593-y

Keywords

Navigation