Skip to main content
Log in

Electromagnetically Induced Absorption in Metamaterials and Applications in the Infrared Range

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

An analog of electromagnetically induced absorption is studied in a multilayer metamaterial composed of a similar double structure. The structure is designed by distributing metal rings with different radii between dielectric layers by using the finite integral time domain and effective medium method. The proposed structure exhibits near perfect narrow-band and wideband absorption, which is caused by a bright mode coupled with a dark mode. The absorption mechanism is determined from the current surface and electric field distributions at certain frequencies. The absorption of the structure is greatly influenced when the angle of incidence increases from 0° to 85°. This result can be achieved by angle or frequency select switches. The designed structure is sensitive to the surrounding refractive index, which can be applied as an environment monitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Xia, S.J. Sharpe, A.J. Merriam, and S.E. Harris, Phys. Rev. A 56, 315 (1997).

    Article  Google Scholar 

  2. S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, Carbon 126, 271 (2018).

    Article  Google Scholar 

  3. X.J. He, Y.M. Huang, X.Y. Yang, L. Zhu, F.M. Wu, and J.X. Jiang, RSC Adv. 7, 40321 (2017).

    Article  Google Scholar 

  4. J.P. Marangos, J. Mod. Opt. 45, 471 (1998).

    Article  Google Scholar 

  5. L. Wang, W. Li, and X. Jiang, Opt. Lett. 40, 2325 (2015).

    Article  Google Scholar 

  6. X.-T. Yao, Q. Lin, X. Zhai, Y. Su, M.-Z. Liang, M.-Z. Liang, and L.-L. Wang, Appl. Phys. Express 10, 102001 (2017).

    Article  Google Scholar 

  7. R. Ortuño, M. Cortijo, and A. Martínez, J. Opt. 19, 025003 (2017).

    Article  Google Scholar 

  8. C.L. Garrido Alzar, M.A.G. Martinez, and P. Nussenzveig, Am. J. Phys. 70, 37 (2002).

    Article  Google Scholar 

  9. C. Liu, P. Liu, L. Bian, Q. Zhou, G. Li, and H. Liu, Opt. Commun. 410, 17 (2018).

    Article  Google Scholar 

  10. X. He, Y. Yao, X. Yang, G. Lu, W. Yang, Y. Yang, F. Wu, Z. Yu, and J. Jiang, Opt. Commun. 410, 206 (2018).

    Article  Google Scholar 

  11. X. Zhou, T. Zhang, X. Yin, L. Chen, and X. Li, IEEE Photonics J. 9, 1 (2017).

    Google Scholar 

  12. N.I. Zheludev and Y.S. Kivshar, Nat. Mater. 11, 917 (2012).

    Article  Google Scholar 

  13. L. La Spada and L. Vegni, Opt. Express 25, 23699 (2017).

    Article  Google Scholar 

  14. L. La Spada and L. Vegni, Materials 11, 603 (2018).

    Article  Google Scholar 

  15. Y. Lee, S.J. Kim, H. Park, and B. Lee, Sensors 17, 1726 (2017).

    Article  Google Scholar 

  16. R. Tarparelli, R. Iovine, L. La Spada, and L. Vegni, COMPEL Int. J. Comput. Math. Electr. Electron. Eng. 33, 2016 (2014).

    Article  Google Scholar 

  17. N. Engheta, Science 317, 1698 (2007).

    Article  Google Scholar 

  18. Y. Liu, Y. Hao, K. Li, and S. Gong, IEEE Antennas Wirel. Propag. Lett. 15, 80 (2016).

    Article  Google Scholar 

  19. A.M. Shaltout, J. Kim, A. Boltasseva, V.M. Shalaev, and A.V. Kildishev, Nat. Commun. 9, 2673 (2018).

    Article  Google Scholar 

  20. F.-Y. Meng, K. Zhang, Q. Wu, J.-Y. Kim, J.-J. Choi, B. Lee, and J.-C. Lee, IEEE Trans. Magn. 47, 3347 (2011).

    Article  Google Scholar 

  21. J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S.A. Maier, Z. Tian, A.K. Azad, H.T. Chen, A.J. Taylor, J. Han, and W. Zhang, Nat. Commun. 3, 1151 (2012).

    Article  Google Scholar 

  22. J. Zhang, C. Jeppesen, A. Kristensen, and N.A. Mortensen, Opt. Express 18, 17187 (2010).

    Article  Google Scholar 

  23. X. Zhang, Y. Fan, L. Qi, and H. Li, Opt. Mater. Express 6, 2448 (2016).

    Article  Google Scholar 

  24. Z. Wang and B. Yu, J. Appl. Phys. 113, 113101 (2013).

    Article  Google Scholar 

  25. C. Liu, C.H. Behroozi, and L.V. Hau, Nature 409, 490 (2001).

    Article  Google Scholar 

  26. L. Qin, K. Zhang, R.-W. Peng, X. Xiong, W. Zhang, X.-R. Huang, and M. Wang, Phys. Rev. B 87, 125136 (2013).

    Article  Google Scholar 

  27. Y.R. Padooru, A.B. Yakovlev, C.S.R. Kaipa, G.W. Hanson, F. Medina, F. Mesa, and A.W. Glisson, IEEE Trans. Antennas Propag. 60, 5727 (2012).

    Article  Google Scholar 

  28. A.H. Sihvola, Electromagnetic Mixing Formulas and Applications (London: IET, 1999).

    Book  Google Scholar 

  29. F. Monticone and A. Alù, Chin. Phys. B 23, 047809 (2014).

    Article  Google Scholar 

  30. R. Iovine, L. La Spada, R. Tarparelli, and L. Vegni, Mater. Sci. Forum 792, 110 (2014).

    Article  Google Scholar 

  31. S. Alyones, Progr. Electromagn. Res. Lett. 47, 19 (2014).

    Article  Google Scholar 

  32. R. Taubert, M. Hentschel, J. Kastel, and H. Giessen, Nano Lett. 12, 1367 (2012).

    Article  Google Scholar 

  33. X. He, Y. Yao, Y. Huang, Q. Zhang, L. Zhu, F. Wu, G. Ying, and J. Jiang, Opt. Commun. 407, 386 (2018).

    Article  Google Scholar 

  34. Y. Liu, Y.Q. Zhang, X.R. Jin, S. Zhang, and Y.P. Lee, Opt. Commun. 371, 173 (2016).

    Article  Google Scholar 

  35. J. Jiang, Q. Zhang, Q. Ma, S. Yan, F. Wu, and X. He, Opt. Mater. Express 5, 1962 (2015).

    Article  Google Scholar 

  36. J. He, P. Ding, J. Wang, C. Fan, and E. Liang, Opt. Express 23, 6083 (2015).

    Article  Google Scholar 

  37. S.X. Xia, X. Zhai, L.L. Wang, B. Sun, J.Q. Liu, and S.C. Wen, Opt. Express 24, 17886 (2016).

    Article  Google Scholar 

  38. R. Iovine, L.L. Spada, and L. Vegni, Nanoplasmonic sensor for chemical measurements, in SPIE Optics + Optoelectronics, vol. 6 (2013).

  39. M. Wan, Y. Song, L. Zhang, and F. Zhou, Opt. Express 23, 27361 (2015).

    Article  Google Scholar 

  40. J. Zhang, J. Tian, and L. Li, IEEE Photonics J. 10, 1 (2018).

    Google Scholar 

  41. L. La Spada and L. Vegni, Opt. Express 24, 5763 (2016).

    Article  Google Scholar 

  42. X. Chen and W.-H. Fan, Opt. Commun. 356, 84 (2015).

    Article  Google Scholar 

  43. S.-X. Xia, X. Zhai, L.-L. Wang, and S.-C. Wen, Photonics Res. 6, 692 (2018).

    Article  Google Scholar 

  44. T. Koschny, M. Kafesaki, E.N. Economou, and C.M. Soukoulis, Phys. Rev. Lett. 93, 107402 (2004).

    Article  Google Scholar 

  45. D.R. Smith, D.C. Vier, T. Koschny, and C.M. Soukoulis, Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 71, 036617 (2005).

    Article  Google Scholar 

  46. T.M. McManus, L.L. Spada, and Y. Hao, J. Opt. 18, 044005 (2016).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Natural Science Research Project of Anhui Province Education Department (Grant No. KJ2018A0407), National Natural Science Foundation of China (Grant No. 61704161), Major Science and Technology Projects in Anhui Province(18030901006), Anhui Key Research and Development Plan Project (201904b11020007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renxia Ning.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ning, R., Bao, J., Chen, Z. et al. Electromagnetically Induced Absorption in Metamaterials and Applications in the Infrared Range. J. Electron. Mater. 48, 4733–4739 (2019). https://doi.org/10.1007/s11664-019-07263-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07263-x

Keywords

Navigation