Skip to main content
Log in

Studies on structural, electrical and dielectric properties of nickel ion conducting polyvinyl alcohol based polymer electrolyte films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Polyvinyl alcohol (PVA) complexed with different weight percent ratios of Nickel Bromide (NiBr2) salt were prepared by using solution cast technique. X-ray diffraction analysis confirmed the complexation of the salt with the polymer. Differential scanning calorimetry was used to determine the glass transition and melting temperatures of pure PVA and PVA:NiBr2 complexed films. Electrical conductivity was measured using ac impedance analyzer in the frequency and temperature range 1 Hz–1 MHz and 303–373 K respectively. It was observed that the magnitude of electrical conductivity increases with NiBr2 salt concentration as well as temperature. Frequency dependence electrical conductivity of the complexed polymer electrolyte films follows the Jonscher’s equation. The dielectric behavior was analyzed using dielectric permittivity\(\left( {{\varepsilon ^\prime}} \right)\) and loss tangent \(\left( {\tan \delta } \right)\) of the samples. Relaxation time was determined from the variation of loss tangent with frequency at different temperatures. The modulus spectra indicated the non-Debye nature of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Bhandari, M. Deepa, A.K. Srivastava, S.T. Lakshmikumar, R. Kant, Solid State Ion. 41, 180 (2009)

    Google Scholar 

  2. K. Kiran Kumar, M. Ravi, Y. Pavani, S. Bhavani, A.K. Sharma, V.V.R. Narasimha Rao, J. Membrane. Sci. 454, 200 (2014)

    Article  Google Scholar 

  3. C.V. Subba Reddy, Q.Y. Zhu, L.Q. Mai, W. Chen, J. Appl. Electrochem. 36, 1051 (2006)

    Article  Google Scholar 

  4. D.K. Pradhan, R.N.P. Choudhary, B.K. Samantaray. Mater. Chem. Phys. 115, 557 (2009)

    Article  Google Scholar 

  5. V.H. Zapata, W.A. Castro, R.A. Vargas, B.-E. Mellander, Electrochim. Acta 53, 1476 (2007)

    Article  Google Scholar 

  6. S. Rajendran, M. Sivakumar, R. Subadevi, Solid State Ion. 167, 335 (2004)

    Article  Google Scholar 

  7. C.-W. Liew, K.H. Arifin, J. Kawamura, Y. Iwai, S. Ramesh, A.K. Arof, J. Non-Crystalline Solids 425, 163 (2015)

    Article  Google Scholar 

  8. K. Sownthari, S.A. Suthanthiraraj, Electrochim. Acta 174, 885 (2015)

    Article  Google Scholar 

  9. M.A.G. Martins, C.A.C. Sequeira, J. Power Sources 32, 107 (1990)

    Article  Google Scholar 

  10. S. Guzman-Puyol, L. Ceseracciu, J.A. Heredia-Guerrero, C.G. Anyfantis, R. Cingolani, A. Athanassiou, l.S. Bayer. Chem. Eng. J. 277, 242–251 (2015)

    Article  Google Scholar 

  11. M. Kurumova, D. Lopez, R. Benavente, C. Mijangos, J.M. Perena, Polymer 41, 9265 (2000)

    Article  Google Scholar 

  12. P. Balaji Bhargav, V. Madhu Mohan, A.K. Sharma, V.V.R. Narasimha Rao, Curr. Appl. Phys. 9, 165 (2009)

    Article  Google Scholar 

  13. O.G. Abdullah, S.B. Aziz, D.R. Saber, R.M. Abdullah, R.R. Hanna, S.R. Saeed, J. Mater. Sci. doi:10.1007/s10854-017-6623-1

  14. X. Tang, R. Muchakayala, S. Song, Z. Zhang, A.R. Polu, J. Ind. Eng. Chem. 37, 67 (2016)

    Article  Google Scholar 

  15. R.I. Mohamed, J. Phys. Chem. Solids 61, 1357 (2000)

    Article  Google Scholar 

  16. M. Ravi, S. Song, J. Wang, T. Wang, R. Nadimicherla, J. Mater. Sci. 27, 1370 (2016)

    Google Scholar 

  17. K. Funke, B. Roling, M. Langer, Solid State Ionics 105, 195 (1998)

    Article  Google Scholar 

  18. G. Hirankumar, S. Selvasekarpandian, M.S. Bhuvaneswari, R. Baskaran, M. Vijayakumar, J. Solid State Electrochem. 10, 193 (2006)

    Article  Google Scholar 

  19. N. Shukla, A.K. Thakur, A. Shukla, R. Chatterjee, J. Mater Sci. 25, 2759 (2014)

    Google Scholar 

  20. P. Pissis, G. Georgoussis, V.A. Bershtein, E. Neagu, A.M. Fainleib, J. Non-Cryst. Solids 305, 150 (2002)

    Article  Google Scholar 

  21. B. Tareev, Physics of Dielectric Materials (MIR Publications, Moscow, 1979)

    Google Scholar 

  22. M. Marzantowicz, J.R. Dygas, F. Krok, Z. Florjanczyk, E. Zygadto-Monikowska, J. Non-Cryst. Solids 353, 4467 (2007)

    Article  Google Scholar 

  23. L. Fan, Z. Dan, G. Wei, C.W. Nan, M. Li, Mater. Sci. Eng. B 99, 340 (2003)

    Article  Google Scholar 

  24. S. Sen, P. Pramanik, R.N.P. Choudhary, Appl. Phys. A 82, 549 (2006)

    Article  Google Scholar 

  25. M. Ravi, S. Bhavani, K. Kiran Kumar, V.V.R. Narasimha Rao, Solid State Sci. 19, 85 (2013)

    Article  Google Scholar 

  26. A.K. Kulkarni, P. Lunkeneheimer, A. Loidl, Mater. Chem. Phys. 63, 93 (2000)

    Article  Google Scholar 

  27. G. Williams, David C. Watts, Trans. Faraday Soc. 66:80 (1970)

    Article  Google Scholar 

  28. K. Kiran Kumar, M. Ravi, Y. Pavani, S. Bhavani, A.K. Sharma, V.V.R Narasimha Rao, ‎J. Non-Cryst. Solids 358:3205 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muchakayala Ravi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhavani, S., Ravi, M., Pavani, Y. et al. Studies on structural, electrical and dielectric properties of nickel ion conducting polyvinyl alcohol based polymer electrolyte films. J Mater Sci: Mater Electron 28, 13344–13349 (2017). https://doi.org/10.1007/s10854-017-7171-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7171-4

Navigation