Skip to main content
Log in

A Method of Combining the Increased Density of Acceptors with Restrained Density of Oxygen Vacancies to Fabricate p-Type Single-Crystalline ZnO Films

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Single-crystalline ZnO films with good crystal quality were grown by plasma-assisted molecular beam epitaxy (MBE) technique on c-plane sapphire substrates and implanted with fixed energy of 180-keV P and 100-keV O ions at 460°C. The implanted single-crystalline ZnO films exhibit p-Type characteristics with hole concentration in the range of 5.3 × 1017–1.5 × 1018 cm−3, hole mobilities between 1.4 cm2V−1 s−1 and 2.1 cm2V−1 s−1, and resistivities in the range of 0.672–1.832 Ωcm, as confirmed by Hall-effect measurements. The x-ray diffraction pattern of the implanted single-crystalline ZnO films exhibits (002) orientation (c-plane), with no other secondary phase appearing after ion implantation and dynamic annealing. It is deduced from x-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy results that P ions were effectively implanted and formed acceptor complex PZn–2VZn, acting predominantly in all acceptors and achieving the goal of increasing the density of acceptors. Raman spectra and XPS results reflect that the enhanced solubility and stability of acceptor complexes in implanted single-crystalline ZnO films are related to the reduction of the concentration of oxygen vacancies by O ion implantation, achieving the goal of restraining the density of oxygen vacancies. It is concluded that the method of combining the increased density of acceptors and the restrained density of oxygen vacancies is meaningful and feasible, and afforded excellent p-type characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.-C. Perng, M.-H. Hong, K.-H. Chen, and K.-H. Chen, J. Alloys Compd. 695, 549 (2017).

    Article  Google Scholar 

  2. M. Kumar, S. Otari, H. Jeong, and D. Lee, J. Alloys Compd. 725, 1115 (2017).

    Article  Google Scholar 

  3. S.-H. Kim, G.-I. Shim, and S.-Y. Choi, J. Alloys Compd. 698, 77 (2017).

    Article  Google Scholar 

  4. C.L. Jia, K.M. Wang, X.L. Wang, X.J. Zhang, and F. Lu, Opt. Express 13, 5093 (2005).

    Article  Google Scholar 

  5. Z.Y. Zhang, J.Y. Huang, S.S. Chen, X.H. Pan, L.X. Chen, and Z.Z. Ye, J. Cryst. Growth 483, 236 (2018).

    Article  Google Scholar 

  6. W. Yang, S.S. Hullavarad, B. Nagaraj, I. Takeuchi, R.P. Sharma, T. Venkatesan, R.D. Vispute, and H. Shen, Appl. Phys. Lett. 82, 3424 (2003).

    Article  Google Scholar 

  7. S.O. Kucheyev, C. Jagadish, J.S. Williams, P.N.K. Deenapanray, M. Yano, K. Koike, S. Sasa, M. Inoue, and K. Ogata, J. Appl. Phys. 93, 2972 (2003).

    Article  Google Scholar 

  8. Y.J. Zeng, Z.Z. Ye, and W.Z. Xue, Appl. Phys. Lett. 88, 062107 (2006).

    Article  Google Scholar 

  9. L.Q. Zhang, Y.Z. Zhang, Z.Z. Ye, S.S. Lin, B. Lu, H.P. He, L.X. Chen, J.G. Lu, J. Jiang, K.W. Wu, J.Y. Huang, and L.P. Zhu, Appl. Phys. A 106, 191 (2012).

    Article  Google Scholar 

  10. B.W.-C. Au and K.-Y. Chan, Appl. Phys. A 123, 485 (2007).

    Article  Google Scholar 

  11. J. Huang, L.J. Wang, R. Xu, K. Tang, W.M. Shi, and Y.B. Xia, Semicond. Sci. Technol. 24, 075025 (2009).

    Article  Google Scholar 

  12. G.-T. Du, W. Zhao, and G.-G. Wu, Appl. Phys. Lett. 101, 053503 (2012).

    Article  Google Scholar 

  13. Z. Shi, Y. Zhang, and B. Wu, Appl. Phys. Lett. 102, 161101 (2013).

    Article  Google Scholar 

  14. J. Huang, Z. Li, S. Chu, and J. Liu, Appl. Phys. Lett. 23, 232102 (2012).

    Article  Google Scholar 

  15. L.J. Mandalapu, Z. Yang, F.X. Xiu, D.T. Zhao, and J.L. Liu, Appl. Phys. Lett. 88, 092103 (2006).

    Article  Google Scholar 

  16. T.M. Barnes, K. Olson, and C.A. Wolden, Appl. Phys. Lett. 86, 112112 (2005).

    Article  Google Scholar 

  17. L.G. Wang and A. Zunger, Phys. Rev. Lett. 90, 256401 (2003).

    Article  Google Scholar 

  18. L. Gong, Z.Z. Ye, and J.G. Lu, Vacuum 85, 365 (2010).

    Article  Google Scholar 

  19. D.C. Look, D.C. Reynolds, C.W. Litton, R.L. Jones, D.B. Eason, and G. Cantwell, Appl. Phys. Lett. 81, 1830 (2002).

    Article  Google Scholar 

  20. M.S. Oh and R. Navamathavan, RSC Adv. 7, 16119 (2017).

    Article  Google Scholar 

  21. P. Sharma, R. Bhardwaj, R. Singh, S. Kumar, and S. Mukherjee, Appl. Phys. Lett. 111, 091604 (2017).

    Article  Google Scholar 

  22. P. Sharma, R. Bhardwaj, A. Kumar, and S. Mukherjee, J. Phys. D Appl. Phys. 51, 015103 (2018).

    Article  Google Scholar 

  23. R. Bhardwaj, P. Sharma, R. Singh, S. Mukherjee, and I.E.E.E. Photo, Technol. Lett. 29, 1215 (2017).

    Article  Google Scholar 

  24. J.S. Williams, Mater. Sci. Eng. A 253, 8 (1998).

    Article  Google Scholar 

  25. D.G. Armour, Vacuum 37, 423 (1987).

    Article  Google Scholar 

  26. S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, and T. Steiner, Prog. Mater. Sci. 50, 293 (2005).

    Article  Google Scholar 

  27. M.A. Myers, M.T. Myers, M.J. General, J.H. Lee, L. Shao, and H. Wang, Appl. Phys. Lett. 101, 112201 (2012).

    Article  Google Scholar 

  28. C.O. Kim, D.H. Shin, S. Kim, S. Choi, and K. Belay, J. Appl. Phys. 110, 103708 (2011).

    Article  Google Scholar 

  29. T. Prasada Rao and M.C. Santhosh Kumar, J. Alloy. Compd. 509, 8676 (2011).

    Article  Google Scholar 

  30. J.D. Pedersen, H.J. Esposito, and K.S. The, Nanoscale Res. Lett. 6, 568 (2011).

    Article  Google Scholar 

  31. N. Fujimura, T. Nishihara, S. Goto, J.F. Xu, and T. Ito, J. Cryst. Growth 130, 269 (1993).

    Article  Google Scholar 

  32. M.-J. Kim, J.-T. Yeon, K. Hong, S.-I. Lee, N.-S. Choi, and S.-S. Kim, Bull. Korean Chem. Soc. 34, 2029 (2013).

    Article  Google Scholar 

  33. M.A. Carrillo Solano, M. Dussauze, P. Vinatier, L. Croguennec, E.I. Kamitsos, R. Hausbrand, and W. Jaegermann, Ionics 22, 471 (2016).

    Article  Google Scholar 

  34. W.-J. Lee, J. Kang, and K.J. Chang, Phys. Rev. B 73, 024117 (2006).

    Article  Google Scholar 

  35. M. Yuan, H. Yuan, Q. Jia, Y. Chen, X. Jiang, and H.-H. Wang, J. Phys. D Appl. Phys. 45, 085103 (2012).

    Article  Google Scholar 

  36. J.C.C. Fan and J.B. Goodenough, J. Appl. Phys. 48, 3524 (1977).

    Article  Google Scholar 

  37. L. Jing, Z. Xu, X. Sun, J. Shang, and W. Cai, Appl. Surf. Sci. 180, 308 (2001).

    Article  Google Scholar 

  38. F. Li, X.C. Liu, R.W. Zhou, H.M. Chen, S.Y. Zhuo, and E.W. Shi, J. Appl. Phys. 116, 243910 (2014).

    Article  Google Scholar 

  39. C.J. Youn, T.S. Jeong, M.S. Han, and J.H. Kim, J. Cryst. Growth 261, 526 (2004).

    Article  Google Scholar 

  40. C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E.M. Kaidashev, M. Lorenz, and M. Grundmann, Appl. Phys. Lett. 83, 1974 (2003).

    Article  Google Scholar 

  41. Z.Z. Zhi, Y.C. Liu, B.S. Li, X.T. Zhang, Y.M. Lu, D.Z. Shen, and X.W. Fan, J. Phys. D. 36, 719 (2003).

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Zhejiang Provincial Public Technology Research (LGG18E020001) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingyun Huang or Zhizhen Ye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Huang, J., Chen, S. et al. A Method of Combining the Increased Density of Acceptors with Restrained Density of Oxygen Vacancies to Fabricate p-Type Single-Crystalline ZnO Films. J. Electron. Mater. 48, 780–786 (2019). https://doi.org/10.1007/s11664-018-6784-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6784-6

Keywords

Navigation