Skip to main content
Log in

Phosphate structure and lithium environments in lithium phosphorus oxynitride amorphous thin films

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Lithium ion-conducting glasses attract wide interest for electrochemical applications like efficient energy storage devices. This work presents a structural study on involved bonding units, based on X-ray photoelectron spectroscopy and infrared spectroscopy, of lithium phosphorus oxide and oxynitride amorphous thin films prepared by RF magnetron sputtering. A thorough consideration of the mid- and far-infrared spectral regions demonstrated structural changes at the phosphate units and the lithium ion environments triggered by nitrogen incorporation and post-deposition thermal treatment. It was found that films prepared by sputtering in pure nitrogen atmosphere have about 75 % of their nitrogen atoms in sites doubly coordinated with phosphorus (P–N=P), and the rest in triply coordinated sites. It was shown also that nitrogen incorporation favors the stability of lithium ions, while annealing enhances ionic conductivity of the oxynitride films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhao S, Fu Z, Qin Q (2002) A solid-state electrolyte lithium phosphorus oxynitride film prepared by pulsed laser deposition. Thin Solid Films 415:108–113. doi:10.1016/S0040-6090(02)00543-6

    Article  CAS  Google Scholar 

  2. Vereda F, Goldner RB, Haas TE, Zerigian P (2002) Rapidly grown IBAD LiPON films with high Li-ion conductivity and electrochemical stability. Electrochem Solid-State Lett 5:A239–A241

    Article  CAS  Google Scholar 

  3. Stallworth PE, Vereda F, Greenbaum SG et al (2005) Solid-state NMR studies of lithium phosphorus oxynitride films prepared by nitrogen ion beam-assisted deposition. J Electrochem Soc 152:A516. doi:10.1149/1.1856922

    Article  CAS  Google Scholar 

  4. Bates JB, Dudney NJ, Gruzalski GR et al (1993) Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries. J Power Sources 43:103–110. doi:10.1016/0378-7753(93)80106-Y

    Article  CAS  Google Scholar 

  5. Wang B (1995) Synthesis, crystal structure, and ionic conductivity of a polycrystalline lithium phosphorus oxynitride with the γ-Li3PO4 structure. J Solid State Chem 115:313–323. doi:10.1006/jssc.1995.1140

    Article  CAS  Google Scholar 

  6. Kim B, Cho YS, Lee J-G et al (2002) Ion-implantation modification of lithium–phosphorus oxynitride thin-films. J Power Sources 109:214–219. doi:10.1016/S0378-7753(02)00036-8

    Article  CAS  Google Scholar 

  7. Kuwata N, Iwagami N, Tanji Y et al (2010) Characterization of thin-film lithium batteries with stable thin-film Li3PO4 solid electrolytes fabricated by ArF excimer laser deposition. J Electrochem Soc 157:A521. doi:10.1149/1.3306339

    Article  CAS  Google Scholar 

  8. Liu W-Y, Fu Z-W, Li C-L, Qin Q-Z (2004) Lithium phosphorus oxynitride thin film fabricated by a nitrogen plasma-assisted deposition of E-beam reaction evaporation. Electrochem Solid-State Lett 7:J36. doi:10.1149/1.1778934

    Article  CAS  Google Scholar 

  9. Kamitsos EI, Dussauze M, Varsamis C-PE et al (2007) Thin film amorphous electrolytes: structure and composition by experimental and simulated infrared spectra. J Phys Chem C 111:8111–8119. doi:10.1021/jp068617b

    Article  CAS  Google Scholar 

  10. Kamitsos EI, Dussauze M, Varsamis C-PE (2008) Structure of glass thin films by infrared techniques. Phys Chem Glasses Eur J Glass Sci Technol B 49:118–126

    CAS  Google Scholar 

  11. Hamon Y, Douard A, Sabary F et al (2006) Influence of sputtering conditions on ionic conductivity of LiPON thin films. Solid State Ionics 177:257–261. doi:10.1016/j.ssi.2005.10.021

    Article  CAS  Google Scholar 

  12. Nimisha CS, Rao KY, Venkatesh G et al (2011) Sputter deposited LiPON thin films from powder target as electrolyte for thin film battery applications. Thin Solid Films 519:3401–3406. doi:10.1016/j.tsf.2011.01.087

    Article  CAS  Google Scholar 

  13. Fleutot B, Pecquenard B, Martinez H et al (2011) Investigation of the local structure of LiPON thin films to better understand the role of nitrogen on their performance. Solid State Ionics 186:29–36. doi:10.1016/j.ssi.2011.01.006

    Article  CAS  Google Scholar 

  14. Fleutot B, Pecquenard B, Martinez H, Levasseur A (2013) Lithium borophosphate thin film electrolyte as an alternative to LiPON for solder reflow processed lithium-ion microbatteries. Solid State Ionics 250:49–55

    Article  Google Scholar 

  15. Park HY, Nam SC, Lim YC et al (2006) Effects of sputtering pressure on the characteristics of lithium ion conductive lithium phosphorous oxynitride thin film. J Electroceram 17:1023–1030. doi:10.1007/s10832-006-8976-3

    Article  CAS  Google Scholar 

  16. Roh NS, Lee SD, Kwon HS (1999) Effects of deposition condition on the ionic conductivity and structure of amorphous lithium phosphorus oxynitrate thin film. Scr Mater 42:43–49. doi:10.1016/S1359-6462(99)00307-3

    Article  Google Scholar 

  17. Choi CH, Cho WI, Cho BW et al (2002) Radio-frequency magnetron sputtering power effect on the ionic conductivities of LiPON films. Electrochem Solid-State Lett 5:A14. doi:10.1149/1.1420926

    Article  CAS  Google Scholar 

  18. Kim B, Sang Y, Lee J et al (2002) Ion-implantation modification of lithium–phosphorus oxynitride thin-films. J Power Sources 109:214–219

    Article  CAS  Google Scholar 

  19. Mascaraque N, Fierro JLG, Durán A, Muñoz F (2013) An interpretation for the increase of ionic conductivity by nitrogen incorporation in LiPON oxynitride glasses. Solid State Ionics 233:73–79. doi:10.1016/j.ssi.2012.12.017

    Article  CAS  Google Scholar 

  20. Hamon Y, Vinatier P, Kamitsos EI et al (2008) Nitrogen flow rate as a new key parameter for the nitridation of electrolyte thin films. Solid State Ionics 179:1223–1226. doi:10.1016/j.ssi.2008.04.005

    Article  CAS  Google Scholar 

  21. Kamitsos EI, Dussauze M, Varsamis CP et al (2007) Infrared spectroscopy of Li-diborate glassy thin films. J Non-Cryst Solids 353:1818–1823. doi:10.1016/j.jnoncrysol.2007.02.011

    Article  CAS  Google Scholar 

  22. Fleutot B, Pecquenard B, Martinez H, Levasseur A (2012) Thorough study of the local structure of LiPON thin films to better understand the influence of a solder-reflow type thermal treatment on their performances. Solid State Ionics 206:72–77. doi:10.1016/j.ssi.2011.11.009

    Article  CAS  Google Scholar 

  23. Fleutot B, Pecquenard B, Martinez H, Levasseur A (2013) Lithium borophosphate thin film electrolyte as an alternative to LiPON for solder-reflow processed lithium-ion microbatteries. Solid State Ionics 249–250:49–55. doi:10.1016/j.ssi.2013.07.009

    Article  Google Scholar 

  24. Dussauze M, Kamitsos EI, Johansson P et al (2013) Lithium Ion conducting boron-oxynitride amorphous thin films: synthesis and molecular structure by infrared spectroscopy and density functional theory modeling. J Phys Chem C 117:7202–7213. doi:10.1021/jp401527x

    Article  CAS  Google Scholar 

  25. Bates J (1992) Electrical properties of amorphous lithium electrolyte thin films. Solid State Ionics 53–56:647–654. doi:10.1016/0167-2738(92)90442-R

    Article  Google Scholar 

  26. Wang B, Kwak BS, Sales BC, Bates JB (2008) Ionic conductivities and structure of lithium phosphorus oxynitride glasses. J Non-Cryst Solids 183:297–306

    Article  Google Scholar 

  27. Chiu K-F, Chen C, Lin KM et al (2010) Modification of sputter deposited solid-state electrolyte thin films. Vacuum 84:1296–1301. doi:10.1016/j.vacuum.2010.02.006

    Article  CAS  Google Scholar 

  28. Herbert EG, Tenhaeff WE, Dudney NJ, Pharr GM (2011) Mechanical characterization of LiPON films using nanoindentation. Thin Solid Films 520:413–418. doi:10.1016/j.tsf.2011.07.068

    Article  CAS  Google Scholar 

  29. Neudecker BJ, Zuhr RA, Bates JB (1999) Lithium silicon tin oxynitride (LiySiTON): high-performance anode in thin-film lithium-ion batteries for microelectronics. J Power Sources 81–82:27–32. doi:10.1016/S0378-7753(98)00202-X

    Article  Google Scholar 

  30. Schwöbel A, Hausbrand R, Jaegermann W (2014) Interface reactions between LiPON and lithium studied by in-situ X-ray photoemission. Solid State Ionics 2–5. doi: 10.1016/j.ssi.2014.10.017

  31. Kamitsos EI, Chryssikos GD (1998) Alkali sites in glass. Solid State Ionics 105:75–85. doi:10.1016/S0167-2738(97)00451-7

    Article  CAS  Google Scholar 

  32. Corbridge DEC, Lowe EJ (1954) The infra-red spectra of some inorganic phosphorus compounds. J Chem Soc 493–502. doi:10.1039/JR9540000493

  33. Dayanand C, Bhikshamaiah G, Tyagaraju VJ et al (1996) Structural investigations of phosphate glasses: a detailed infrared study of the x(PbO)-(1-x) P2O5 vitreous system. J Mater Sci 31:1945–1967. doi:10.1007/BF00356615

    Article  CAS  Google Scholar 

  34. Popović L, De Waal D, Boeyens JCA (2005) Correlation between Raman wavenumbers and P-O bond lengths in crystalline inorganic phosphates. J Raman Spectrosc 36:2–11. doi:10.1002/jrs.1253

    Article  Google Scholar 

  35. Velli LL, Varsamis CPE, Kamitsos EI et al (2005) Structural investigation of metaphosphate glasses. Phys Chem Glas 46:178–181

    CAS  Google Scholar 

  36. Varsamis CPE, Kamitsos EI, Minami T, Machida N (2012) Investigation of CuI-containing molybdophosphate glasses by infrared reflectance spectroscopy. J Phys Chem C 116:11671–11681

    Article  CAS  Google Scholar 

  37. Varsamis C-P, Vegiri A, Kamitsos EI (2002) Molecular dynamics investigation of lithium borate glasses: local structure and ion dynamics. Phys Rev B 65:104203/1–14. doi:10.1103/PhysRevB.65.104203

    Article  CAS  Google Scholar 

  38. Marchand R, Laurent Y, Guyader J et al (1991) Nitrides and oxynitrides: preparation, crystal chemistry and properties. J Eur Ceram Soc 8:197–213. doi:10.1016/0955-2219(91)90096-I

    Article  CAS  Google Scholar 

  39. Muñoz F, Durán A, Pascual L et al (2008) Increased electrical conductivity of LiPON glasses produced by ammonolysis. Solid State Ionics 179:574–579. doi:10.1016/j.ssi.2008.04.004

    Article  Google Scholar 

  40. Bunker BC, Tallant DR, Balfe CA et al (1987) Structure of phosphorus oxynitride glasses. J Am Ceram Soc 70:675–681

    Article  CAS  Google Scholar 

  41. Marchand R, Agliz D, Boukbir L, Quemerais A (1988) Characterization of nitrogen containing phosphate glasses by X-ray photoelectron spectroscopy. J Non-Cryst Solids 103:35–44

    Article  CAS  Google Scholar 

  42. Brow RK, Reidmeyer MR, Day DE (1988) Oxygen bonding in nitrided sodium- and lithium-metaphosphate glasses. J Non-Cryst Solids 99:178–189. doi:10.1016/0022-3093(88)90470-X

    Article  CAS  Google Scholar 

  43. Schwöbel A, Precht R, Motzko M et al (2014) Determination of the valence band structure of an alkali phosphorus oxynitride glass: a synchrotron XPS study on LiPON. Appl Surf Sci 321:55–60. doi:10.1016/j.apsusc.2014.09.174

    Article  Google Scholar 

  44. Kim YG, Wadley HNG (2011) The influence of the nitrogen-ion flux on structure and ionic conductivity of vapor deposited lithium phosphorus oxynitride films. J Power Sources 196:1371–1377. doi:10.1016/j.jpowsour.2010.08.115

    Article  CAS  Google Scholar 

  45. Kamitsos EI, Chryssikos GD, Patsis AP, Duffy JA (1996) Metal ion sites in oxide glasses relation to glass basicity and ion transport. J Non-Cryst Solids 196:249–254. doi:10.1016/0022-3093(95)00595-1

    Article  CAS  Google Scholar 

  46. Kamitsos EI, Yiannopoulos Y, Jain H, Huang W (1996) Far-infrared spectra of alkali germanate glasses and correlation with electrical conductivity. Phys Rev B 54:9775–9783. doi:10.1103/PhysRevB.54.9775

    Article  CAS  Google Scholar 

  47. Du YA, Holzwarth NAW (2010) First-principles study of LiPON and related solid electrolytes. Phys Rev B 81:184106. doi:10.1103/PhysRevB.81.184106

    Article  Google Scholar 

  48. Du YA, Holzwarth NAW (2008) Effects of O vacancies and N or Si substitutions on Li+ migration in Li3 PO 4 electrolytes from first principles. Phys Rev B 78:174301. doi:10.1103/PhysRevB.78.174301

    Article  Google Scholar 

  49. Kamitsos EI (1989) Modifying role of alkali-metal cations in borate glass networks. J Phys Chem 93:1604–1611. doi:10.1021/j100341a083

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. A. Carrillo Solano or M. Dussauze.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carrillo Solano, M.A., Dussauze, M., Vinatier, P. et al. Phosphate structure and lithium environments in lithium phosphorus oxynitride amorphous thin films. Ionics 22, 471–481 (2016). https://doi.org/10.1007/s11581-015-1573-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-015-1573-1

Keywords

Navigation