Skip to main content
Log in

High-Temperature Mechanical Properties of Zn-Based High-Temperature Lead-Free Solders

  • TMS2018 Microelectronic Packaging, Interconnect, and Pb-free Solder
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The effect of a minor addition of Ti on the mechanical behavior of Zn-25Sn-xTi (x = 0 wt.%, 0.02 wt.% and 0.04 wt.%) solder alloy at high temperatures of 80°C, 100°C, and 120°C was investigated. The investigation revealed that Ti acted as nucleating agent. The grain size of the Zn-25Sn alloy was significantly refined with the addition of 0.02%Ti. The Zn-25Sn-0.02Ti exhibited the greatest elongation at all test temperatures. An excess addition of Ti (more than 0.04%) was found to cause the formation of ternary TiSn4Zn5 compounds, which is correlated with the degradation of elongation. The fractographs of the solders at high temperature revealed the presence of the TiSn4Zn5 compound in the dimple bottom, indicating that voids nucleated at the particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Zeng, S. McDonald, and K. Nogita, Microelectron. Reliab. 52, 1306 (2012).

    Article  Google Scholar 

  2. X. Yang, W. Hu, X. Yan, and Y. Lei, J. Electron. Mater. 44, 1128 (2015).

    Article  Google Scholar 

  3. C.H. Wang and K.T. Li, Mater. Chem. Phys. 164, 223 (2015).

    Article  Google Scholar 

  4. K. Suganuma, S.J. Kim, and K.S. Kim, JOM 61, 64 (2009).

    Article  Google Scholar 

  5. R. Mahmudi and M. Eslami, J. Mater. Sci.: Mater. Electron. 22, 1168 (2011).

    Google Scholar 

  6. R. Mahmudi and M. Eslami, J. Electron. Mater. 39, 2495 (2010).

    Article  Google Scholar 

  7. X. Niu and K.L. Lin, Mater. Sci. Eng., A 677, 384 (2016).

    Article  Google Scholar 

  8. T. Takahashi, S. Komatsu, H. Nishikawa, and T. Takemoto, J. Electron. Mater. 39, 1241 (2010).

    Article  Google Scholar 

  9. J.E. Lee, K.S. Kim, K. Suganuma, J. Takenaka, and K. Hagio, Mater. Trans. 46, 2413 (2005).

    Article  Google Scholar 

  10. X. Niu and K.L. Lin, J. Alloys Compd. 646, 852 (2015).

    Article  Google Scholar 

  11. W.C. Huang and K.L. Lin, J. Electron. Mater. 45, 6137 (2016).

    Article  Google Scholar 

  12. S. Kim, K.S. Kim, S.S. Kim, and K. Suganuma, J. Electron. Mater. 38, 266 (2009).

    Article  Google Scholar 

  13. Z.H. Wang, C.T. Chen, and J.T. Jiu, J. Alloys Compd. 716, 231 (2017).

    Article  Google Scholar 

  14. J.E. Lee, K.S. Kim, K. Suganuma, M. Inoue, and G. Izuta, Mater. Trans. 48, 584 (2007).

    Article  Google Scholar 

  15. C.W. Chang and K.L. Lin, J. Mater. Sci.: Mater. Electron. 29, 10962 (2018).

    Google Scholar 

  16. X. Niu and K.L. Lin, J. Mater. Sci.: Mater. Electron. 28, 105 (2017).

    Google Scholar 

  17. C.L. Chuang, L.C. Tsao, H.K. Lin, and L.P. Feng, Mater. Sci. Eng., A 558, 478 (2012).

    Article  Google Scholar 

  18. K.R. Cardoso, D.N. Travessa, A.G. Escorial, and M. Lieblich, Mater. Res. 10, 199 (2007).

    Article  Google Scholar 

  19. T.B. Massalski, J.L. Murray, L.H. Bennett, and H. Baker, Binary Alloy Phase Diagrams (Park, OH: ASM Metals, 1986), p. 2086.

    Google Scholar 

  20. G.P. Vassilev, E.S. Dobrev, and J.C. Tedenac, J. Alloys Compd. 407, 170 (2006).

    Article  Google Scholar 

  21. H. Okamoto, J. Phase Equilib. Diffus. 29, 211 (2008).

    Article  Google Scholar 

  22. H. Okamoto, M.E. Schlesinger, and E.M. Mueller, Alloy Phase Diagram Committee, Rev ed. (Park, OH: ASM Metals, 2016), p. 370.

    Book  Google Scholar 

  23. K. Doi, S. Ono, H. Ohtani, and M. Hasebe, J. Phase Equilib. Diffus. 27, 63 (2006).

    Article  Google Scholar 

  24. G.P. Vassilev, E.S. Dobrev, and J.C. Tedenac, Cryst. Res. Technol. 41, 739 (2006).

    Article  Google Scholar 

  25. H. Nose, M. Sakane, Y. Tsukada, and H. Nishimura, J. Electron. Packag. 125, 59 (2003).

    Article  Google Scholar 

  26. K. Lange, Handbook of Metal Forming, 1st ed. (New York: McGraw-Hill, 1985), pp. 320–323.

    Google Scholar 

  27. D.C. Stouffer and L.T. Dame, Inelastic Deformation of Metals: Models, Mechanical Properties, and Metallurgy (Hoboken: Wiley, 1996), pp. 6–21.

    Google Scholar 

  28. W.L.R. Santos, C.B. Cruz, J.E. Spinelli, N. Cheung, and A. Garcia, Mater. Sci. Eng., A 712, 127 (2018).

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Ministry of Science and Technology, Republic of China (Taiwan) for the financial support of this study under MOST 104-2221-E-006-029-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Che-Wei Chang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, CW., Lin, KL. High-Temperature Mechanical Properties of Zn-Based High-Temperature Lead-Free Solders. J. Electron. Mater. 48, 135–141 (2019). https://doi.org/10.1007/s11664-018-6776-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6776-6

Keywords

Navigation