Skip to main content
Log in

Effect of Ti addition on the mechanical properties of high temperature Pb-free solders Zn–25Sn–xTi

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This study investigated the effect of Ti content on microstructure and mechanical properties of the high temperature Pb-free solder Zn25SnxTi (x = 0–0.06). The SEM microstructure images show that the addition of Ti refined the grain size of the Zn-rich phases. It was evident that the addition of Ti tends to refine the grain size of the Zn-rich phase at the eutectic structure. The ultimate tensile strength, elongation, and toughness of the alloys were investigated with respect to Ti addition. The Zn25Sn0.02Ti exhibits the largest elongation and the best toughness among all the solders investigated. The microstructure and the fractograph of the alloys show the formation of ternary Ti–Sn–Zn compounds at the addition of 0.03%Ti and above. The variation in toughness with respect to Ti content was ascribed to the combination effect of grain refining and the formation of the intermetallic compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.H. Lau, Y.H. Pao, Solder joint reliability of BGA, CSP, flip chip, and fine pitch SMT assemblies (McGraw-Hill, New York, 1997), pp. 219–288

    Google Scholar 

  2. K. Suganuma, S.J. Kim, K.S. Kim, J. Min, JOM 61, 64–71 (2009)

    Article  Google Scholar 

  3. D. Mitlin, C.H. Raeder, R.W. Messler Jr., Metall. Mater. Trans. A 30, 115–122 (1999)

    Article  Google Scholar 

  4. J.H. Kim, S.W. Jeong, H.M. Lee, Mater. Trans. 43, 1873–1878 (2002)

    Article  Google Scholar 

  5. K. Shinohara, Q. Yu, Int. J. Fatigue 33, 1221–1234 (2011)

    Article  Google Scholar 

  6. G. Zeng, S. McDonald, K. Nogita, Microelectron. Reliab. 52, 1306–1322 (2012)

    Article  Google Scholar 

  7. F. Xing, Y. Lu, C. Luo, Y. Ruan, X. Qiu, Mater. Lett. 181, 42–46 (2016)

    Article  Google Scholar 

  8. R. Mahmudi, S. Alibabaie, Mater. Sci. Eng. A. 559, 421–426 (2013)

    Article  Google Scholar 

  9. R. Mahmudi, M. Eslami, J. Electron. Mater. 39, 2495–2502 (2010)

    Article  Google Scholar 

  10. W.L.R. Santos, C. Brito, F. Bertelli, J.E. Spinelli, A. Garcia, J. Alloys Compd. 647, 989–996 (2015)

    Article  Google Scholar 

  11. I.J. Polmear, Light Alloys: Metallurgy of the Light Metals, 3rd edn. (Elsevier, New York, 2014), pp. 206–209

    Google Scholar 

  12. K.R. Cardoso, D.N. Travessa, A.G. Escorial, M. Lieblich, Mater. Res. 10, 199–203 (2007)

    Article  Google Scholar 

  13. C.L. Chuang, L.C. Tsao, H.K. Lin, L.P. Feng, Mater. Sci. Eng. A. 558, 478–484 (2012)

    Article  Google Scholar 

  14. W.C. Huang, K.L. Lin, J. Electron. Mater. 45, 6137–6142 (2016)

    Article  Google Scholar 

  15. X. Niu, K.L. Lin, J Mater. Sci. Mater. Electron. 28, 105–113 (2017)

    Article  Google Scholar 

  16. H. Okamoto, J. Phase Equilib. Diffus. 29, 211 (2008)

    Article  Google Scholar 

  17. E.M. Mueller, Alloy Phase Diagram Committee, (ASM International, Materials Park, 1983), p. 370

    Google Scholar 

  18. W.M. Chen, S.K. Kang, C.R. Kao, J. Alloys Compd. 520, 244–249 (2012)

    Article  Google Scholar 

  19. J. Wang, C. Liu, C. Leinenbach, U.E. Klotz, P.J. Uggowitzer, J.F. Loffler, Calphad 35, 82–94 (2011)

    Article  Google Scholar 

  20. X. Zhang, Y. Zhan, Q. Guo, G. Zhang, J. Hu, J. Alloys Compd. 480, 382–385 (2009)

    Article  Google Scholar 

  21. G.P. Vassilev, E.S. Dobrev, J.C. Tedenac, J. Alloys Compd. 407, 170–175 (2006)

    Article  Google Scholar 

  22. K. Doi, S. Ono, H. Ohtani, M. Hasebe, J. Phase Equilib. Diffus. 27, 63 (2006)

    Article  Google Scholar 

  23. J.M. Song, H.Y. Chuang, T.X. Wen, Metall. Mater. Trans. A 38, 1371–1375 (2007)

    Article  Google Scholar 

  24. M. Pecht, A. Dasgupta, J.W. Evans, J.Y. Evans, Quality Conformance and Qualification of Microelectronic Packages and Interconnects (Wiley, New York, 1994), p. 211

    Google Scholar 

  25. I.V. Okulov, M. Bönisch, U. Kühn, W. Skrotzki, J. Eckert, Mater. Sci. Eng. A 615, 457–463 (2014)

    Article  Google Scholar 

  26. S. Lampman, Characterization and Failure Analysis of Plastics (ASM International, Materials Park, 2003), pp. 204–210

    Google Scholar 

  27. K. Ito, M. Kumagai, T. Hayashi, M. Yamaguchi, Scripta Mater. 49, 285–290 (2003)

    Article  Google Scholar 

  28. D.C. Hofmann, J.Y. Suh, A. Wiest, G. Duan, M.L. Lind, M.D. Demetriou, W.L. Johnson, Nature 451, 1085–1089 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate the financial support of this study by the Ministry of Science and Technology, Republic of China (Taiwan) under MOST 104-2221-E-006-029-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Che-Wei Chang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, CW., Lin, KL. Effect of Ti addition on the mechanical properties of high temperature Pb-free solders Zn–25Sn–xTi. J Mater Sci: Mater Electron 29, 10962–10968 (2018). https://doi.org/10.1007/s10854-018-9176-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9176-z

Navigation