Skip to main content
Log in

Chemo-thermo-mechanically Coupled Crystal Plasticity Simulation of Stress Evolution in Thermally Strained β-Sn Films

  • TMS2018 Microelectronic Packaging, Interconnect, and Pb-free Solder
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Whisker formation in tin films is a mode of stress relaxation, but the exact conditions causing them are yet to be established. In this work, a three-dimensional full-field chemo-thermo-mechanically coupled crystal plasticity simulation of thermally strained tin films was performed to evaluate the stress evolution and connect it to the redistribution of vacancies. Spatial heterogeneity in the hydrostatic stress along the grain boundary network (that served as the primary conduit for mass transport) was observed, which became more homogeneous towards the film surface. Normal and shear tractions on the columnar grain boundaries were evaluated as they might be crucial to breaking of the oxide layer (formed on the film surface) especially when inclined grain boundaries are present. With such an advanced multi-physics framework, several crystallographic and geometrical factors influencing whisker formation can be analyzed thereby leading to a better understanding of the factors modulating the nucleation and growth of such whiskers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z.B. Lee and N.Z. Lee, Acta Mater. 46, 3701 (1997).

    Article  Google Scholar 

  2. Official Journal of the European Union L 37/19 (2003).

  3. J. Smetana, IEEE Trans. Electron. Packag. Manufact. 30, 11 (2007).

    Article  Google Scholar 

  4. G. Galyon, IEEE Trans. Compon. Packag. Manuf. Technol. 1, 1098 (2011).

    Article  Google Scholar 

  5. P. Jagtap, A. Chakraborty, P. Eisenlohr, and P. Kumar, Acta Mater. 134, 346 (2017).

    Article  Google Scholar 

  6. F. Pei, E. Buchovecky, A. Bower, and E. Chason, Acta Mater. 129, 462 (2017).

    Article  Google Scholar 

  7. E.R. Crandall, G.T. Flowers, R.Jackson, P. Lall, and M.J. Bozack, in 2011 IEEE 57th Holm Conference on Electrical Contacts (Holm), 1–5 (IEEE, 2011).

  8. F. Yang and Y. Li, J. Appl. Phys. 104, 113512 (2008).

    Article  Google Scholar 

  9. E. Chason, N. Jadhav, W.L. Chan, L. Reinbold, and K.S. Kumar, Appl. Phys. Lett. 92, 171901 (2008).

    Article  Google Scholar 

  10. E. Buchovecky, N. Jadhav, A.F. Bower, and E. Chason, J. Electron. Mater. 38, 2676 (2009).

    Article  Google Scholar 

  11. K. Tu and J. Li, Mater. Sci. Eng. A 409, 131 (2005).

    Article  Google Scholar 

  12. P. Sarobol, J. Blendell, and C. Handwerker, Acta Mater. 61, 1991 (2013).

    Article  Google Scholar 

  13. F. Pei, N. Jadhav, E. Buchovecky, A.F. Bower, E. Chason, W. Liu, J.Z. Tischler, G.E. Ice, and R. Xu, J. Appl. Phys. 119, 105302 (2016).

    Article  Google Scholar 

  14. A. Chakraborty and P. Eisenlohr, J. Appl. Phys. 124, 025302 (2018).

    Article  Google Scholar 

  15. P. Shanthraj, P. Eisenlohr, M. Diehl, and F. Roters, Int. J. Plast. 66, 31 (2015).

    Article  Google Scholar 

  16. P. Eisenlohr, M. Diehl, R. Lebensohn, and F. Roters, Int. J. Plast. 46, 37 (2013).

    Article  Google Scholar 

  17. F. Roters, M. Diehl, P. Shanthraj, P. Eisenlohr, C. Reuber, S.L. Wong, T. Maiti, A. Ebrahimi, T. Hochrainer, H.-O. Fabritius, S. Nikolov, M. Friak, N. Fujita, N. Grilli, K.G.F. Janssens, N. Jia, P.J.J. Kok, D. Ma, F. Meier, E. Werner, M. Stricker, D. Weygand, and D. Raabe, Comput. Mater. Sci. (2018) https://doi.org/10.1016/j.commatsci.2018.04.030.

  18. P. Shanthraj, B. Svendsen, L. Sharma, F. Roters, and D. Raabe, J. Mech. Phys. Solids 99, 19 (2017).

    Article  Google Scholar 

  19. B. Svendsen, P. Shanthraj, and D. Raabe, J. Mech. Phys. Solids 112, 619 (2018).

    Article  Google Scholar 

  20. D. Peirce, R. Asaro, and A. Needleman, Acta Metall. 30, 1087 (1982).

    Article  Google Scholar 

  21. J.W. Hutchinson, Proc. R. Soc. A Math. Phys. Eng. Sci. 348, 101 (1976).

  22. T. Maiti and P. Eisenlohr, Scri. Mater. 145, 37 (2018).

    Article  Google Scholar 

  23. T.-K. Lee, T. R. Bieler, C.-U. Kim, and H. Ma, Fundamentals of Lead-Free Solder Interconnect Technology (Springer, Boston, 2015).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aritra Chakraborty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, A., Eisenlohr, P. Chemo-thermo-mechanically Coupled Crystal Plasticity Simulation of Stress Evolution in Thermally Strained β-Sn Films. J. Electron. Mater. 48, 85–91 (2019). https://doi.org/10.1007/s11664-018-6733-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6733-4

Keywords

Navigation