Skip to main content
Log in

Microstructure and Thermoelectric Properties of Hot Extruded Sb-Doped Mg2Si Using MoS2 Nano-particles as Lubricant

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Magnesium silicide is a very promising thermoelectric material for applications in the temperature range of 500–800 K, and is of particular interest for large-scale applications because its constituents are non-toxic, inexpensive and very abundant in the Earth’s crust. Although the hot extrusion (HE) method to compact powders has long been considered for thermoelectric applications because it lends itself easily to large-scale industrial applications, advances to obtain Mg2Si by HE are still difficult to implement. We present the transformations undergone by Mg2Si powders during the nascent HE as well as the modifications of the structural, thermal and electronic properties of the compacted solid. MoS2 particles (2 at.%) are added to the starting Mg2Si:Sb (0.5 at.%) powders which play the role of solid lubricant during this process at 873 K. Samples are extracted from different areas of the die along the extrusion direction and separately characterized, describing the transformations of the material through different stages of the nascent extrusion. X-ray diffraction reveals the expected structure for all samples without any significant texturing. The increase in grain size along the HE direction towards the exit has been determined from analysis of scanning electron microscopy observations. The thermoelectric properties have been characterized using the Harman method between 300 K and 700 K, giving Seebeck coefficients which vary between − 200  μV K−1and − 215 μV K−1 at 700 K. The thermal (λ) and electrical (σ) conductivity decrease as the sample progresses in the extrusion process, and in the case of λ can be accounted for by the increase of sample porosity. The highest figure-of-merit \( \left( {\hbox{ZT}} \right) \) is to be found for the sample extracted from the exit of the die. It increases with temperature reaching a maximum value of 0.32 at 700 K, the highest temperature we could attain experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Yamashita, S. Tomiyoshi, and K. Makita, J. Appl. Phys. 93, 368 (2003).

    Article  CAS  Google Scholar 

  2. B.C. Sales, D. Mandrus, and R.K. Williams, Science 272, 1325 (1996).

    Article  CAS  Google Scholar 

  3. J. Yang, H.M. Li, T. Wu, W.Q. Zhang, L.D. Chen, and J.H. Yang, Adv. Funct. Mater. 18, 2880 (2008).

    Article  CAS  Google Scholar 

  4. R.G. Morris, R.D. Redin, and G.C. Danielson, Phys. Rev. 109, 1909 (1958).

    Article  CAS  Google Scholar 

  5. M. Yoshinaga, T. Iida, M. Noda, T. Endo, and Y. Takanashi, Thin Solid Films 461, 86 (2004).

    Article  CAS  Google Scholar 

  6. J.L. Li, G. Chen, B. Duan, Y.J. Zhu, X.J. Hu, P.C. Zhai, and P. Li, J. Electron. Mater. 46, 2570 (2017).

    Article  CAS  Google Scholar 

  7. D. Vasilevskiy, M.K. Keshavarz, J. Dufourcq, H. Ihou-Mouko, C. Navonne, R.A. Masut, and S. Turenne, Mater. Today Proc. 2, 523 (2015).

    Article  Google Scholar 

  8. A. Bercegol, V. Christophe, M.K. Keshavarz, D. Vasilevskiy, S. Turenne, and R.A. Masut, J. Electron. Mater. 46, 2668 (2017).

    Article  CAS  Google Scholar 

  9. D. Vasilevskiy, R.A. Masut, and S. Turenne, J. Electron. Mater. 41, 1057 (2012).

    Article  CAS  Google Scholar 

  10. D. Vasilevskiy, J.-M. Simard, R.A. Masut, and S. Turenne, J. Electron. Mater. 44, 1733 (2015).

    Article  CAS  Google Scholar 

  11. G. Wiedemann and R. Franz, Ann. Phys. 165, 497 (1853).

    Article  Google Scholar 

  12. J.-H. Hao, Z.-G. Guo, and Q.-H. Jin, Solid State Commun. 150, 2299 (2010).

    Article  CAS  Google Scholar 

  13. I. Sumirat, Y. Ando, and S. Shimamura, J. Porous Mater. 13, 432 (2006).

    Article  Google Scholar 

  14. W. Li, L. Lindsay, D.A. Broido, D.A. Stewart, and N. Mingo, Phys. Rev. B 86, 174307 (2012).

    Article  Google Scholar 

  15. J. de Boor, C. Compere, T. Dasgupta, C. Stiewe, H. Kolb, A. Schmitz, and E. Mueller, J. Mater. Sci. 49, 3196 (2014).

    Article  Google Scholar 

  16. M. Söderberg and G. Grimvall, J. Appl. Phys. 59, 186 (1986).

    Article  Google Scholar 

  17. U. Haruhiko, T. Hiroyuki, U. Masahito, and I. Masaru, Jpn. J. Appl. Phys. 54, 07JB06 (2015).

    Article  Google Scholar 

  18. J. de Boor, D.S. Kim, X. Ao, M. Becker, N.F. Hinsche, I. Mertig, P. Zahn, and V. Schmidt, Appl. Phys. A 107, 789 (2012).

    Article  CAS  Google Scholar 

  19. M. Chhowalla and G.A.J. Amaratunga, Nature 407, 164 (2000).

    Article  CAS  Google Scholar 

  20. M.K. Keshavarz, D. Vasilevskiy, R.A. Masut, and S. Turenne, J. Electron. Mater. 43, 2239 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support of the Natural Sciences and Engineering Research Council (NSERC) of Canada, and of the Fonds de Recherche du Québec-Nature et Technologies (FRQNT) of the province of Québec. We also appreciate the initial support to this project provided by Adrien Bercegol.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Verdier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verdier, P., Vasilevskiy, D., Turenne, S. et al. Microstructure and Thermoelectric Properties of Hot Extruded Sb-Doped Mg2Si Using MoS2 Nano-particles as Lubricant. J. Electron. Mater. 47, 6833–6841 (2018). https://doi.org/10.1007/s11664-018-6596-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6596-8

Keywords

Navigation