Skip to main content
Log in

Thermoelectric properties of porous silicon

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We have studied the thermoelectric properties of porous silicon, a nanostructured, yet single-crystalline form of silicon. Using electrochemical etching, liquid-phase doping, and high-temperature passivation, we show that porous Si can be fabricated such that it has thermoelectric properties superior to bulk Si, for both n- and p-type doping. Hall measurements reveal that the charge carrier mobility is reduced compared to the bulk material which presently limits the increase in thermoelectric efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A.I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W.A. Goddard III, J.R. Heath, Silicon nanowires as efficient thermoelectric materials. Nature 451, 168–171 (2008)

    Article  ADS  Google Scholar 

  2. A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, P. Yang, Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163–167 (2008)

    Article  ADS  Google Scholar 

  3. K. Hippalgaonkar, B. Huang, R. Chen, K. Sawyer, P. Ercius, A. Majumdar, Fabrication of microdevices with integrated nanowires for investigating low-dimensional phonon transport. Nano Lett. 10(11), 4341–4348 (2010)

    Article  ADS  Google Scholar 

  4. J. de Boor, N. Geyer, J.V. Wittemann, U. Gösele, V. Schmidt, Sub-100 nm silicon nanowires by laser interference lithography and metal-assisted etching. Nanotech. 21(9), 095302 (2010). (5pp)

    Article  ADS  Google Scholar 

  5. J. Tang, H.-T. Wang, D.H. Lee, M. Fardy, Z. Huo, T.P. Russell, P. Yang, Holey silicon as an efficient thermoelectric material. Nano Lett. 10(10), 4279–4283 (2010)

    Article  ADS  Google Scholar 

  6. J.-K. Yu, S. Mitrovic, D. Tham, J. Varghese, J.R. Heath, Reduction of thermal conductivity in phononic nanomesh structures. Nat. Nanotechnol. 5(10), 718–721 (2010)

    Article  ADS  Google Scholar 

  7. R.G. Mathur, R.M. Mehra, P.C. Mathur, Thermoelectric power in porous silicon. J. Appl. Phys. 83(11), 5855–5857 (1998)

    Article  ADS  Google Scholar 

  8. G. Gesele, J. Lindsmeier, V. Drach, J. Fricke, R. Arens-Fischer, Temperature-dependent thermal conductivity of porous silicon. J. Phys. D, Appl. Phys. 30, 2911–2916 (1997)

    Article  ADS  Google Scholar 

  9. H. Foell, M. Christophersen, J. Carstensen, G. Hasse, Formation and application of porous silicon. Mater. Sci. Eng. 39(4), 93–141 (2002)

    Article  Google Scholar 

  10. J. Lee, G.A. Galli, J.C. Grossman, Nanoporous Si as an efficient thermoelectric material. Nano Lett. 8(11), 3750–3754 (2008)

    Article  ADS  Google Scholar 

  11. Y. He, D. Donadio, J.-H. Lee, J.C. Grossman, G. Galli, Thermal transport in nanoporous silicon: interplay between disorder at mesoscopic and atomic scales. ACS Nano 5(3), 1839–1844 (2011)

    Article  Google Scholar 

  12. A. Yamamoto, H. Takazawa, T. Ohta, Thermoelectric transport properties of porous silicon nanostructure, in 18th International Conference on Thermoelectrics (1999)

    Google Scholar 

  13. A. Yamamoto, M. Takimoto, T. Ohta, L. Whitlow, K. Miki, K. Sakamoto, K. Kamisako, Two dimensional quantum net of heavily doped porous silicon, in XVII International Conference on Thermoelectrics 1998, Proceedings ICT 98. pp. 198–201 (1998)

    Google Scholar 

  14. A. Uhlir, Electrolytic shaping of germanium and silicon. Bell Syst. Tech. J. 35(2), 333–347 (1956)

    Google Scholar 

  15. D.R. Turner, Electropolishing silicon in hydrofluoric acid solutions. J. Electrochem. Soc. 105(7), 402–408 (1958)

    Article  Google Scholar 

  16. V. Lehmann, Electrochemistry of Silicon (Wiley-VCH, Weinheim, 2002)

    Book  Google Scholar 

  17. M. Becker, U. Goesele, A. Hofmann, S. Christiansen, Highly p-doped regions in silicon solar cells quantitatively analyzed by small angle beveling and micro-Raman spectroscopy. J. Appl. Phys. 106(7), 1 (2009)

    Article  Google Scholar 

  18. L.J. van der Pauw, A method of measuring specific resistivity and hall effect of discs of arbitrary shape. Philips Res. Rep. 13, 1–9 (1958)

    Google Scholar 

  19. J. de Boor, V. Schmidt, Complete characterization of thermoelectric materials by a combined van der Pauw approach. Adv. Mater. 22(38), 4303–4307 (2010)

    Article  Google Scholar 

  20. J. de Boor, V. Schmidt, Efficient thermoelectric van der Pauw measurements. Appl. Phys. Lett. 99, 2 (2011)

    Google Scholar 

  21. J. de Boor, D.S. Kim, X. Ao, D. Hagen, A. Cojocaru, H. Föll, V. Schmidt, Temperature and structure size dependence of the thermal conductivity of porous silicon. Europhys. Lett. 96(1), 16001 (2011)

    Article  ADS  Google Scholar 

  22. T.C. Harman, J.H. Cahn, M.J. Logan, Measurement of thermal conductivity by utilization of the Peltier effect. J. Appl. Phys. 30(9), 1351–1359 (1959)

    Article  ADS  Google Scholar 

  23. J. de Boor, V. Schmidt, Complete characterization of thermoelectric materials by a combined van der Pauw approach and the effect of radiation losses, in MRS Online Proceedings Library, 1314, mrsf10-1314-ll07-01. MRS (2011)

  24. X. Ao, J. de Boor, V. Schmidt, Radiation-corrected Harman method for characterization of thermoelectric materials. Adv. Eng. Mater. 1(6), 1007–1011 (2011)

    Article  Google Scholar 

  25. N.F. Hinsche, I. Mertig, P. Zahn, Effect of strain on the thermoelectric properties of silicon: an ab initio study. J. Phys., Condens. Matter 23(29), 295502 (2011)

    Article  Google Scholar 

  26. S.K. Bux, R.G. Blair, P.K. Gogna, H. Lee, G. Chen, M.S. Dresselhaus, R.B. Kaner, J.-P. Fleurial, Nanostructured bulk silicon as an effective thermoelectric material. Adv. Funct. Mater. 19, 2445–2452 (2009)

    Article  Google Scholar 

  27. G. Masetti, M. Severi, S. Solmi, Modeling of carrier mobility against carrier concentration in arsenic-doped, phosphorus-doped, and boron-doped silicon. IEEE Trans. Electron Devices 30(7), 764–769 (1983)

    Article  Google Scholar 

  28. V. Schmidt, J.V. Wittemann, U. Gösele, Growth, thermodynamics, and electrical properties of silicon nanowires. Chem. Rev. 110, 361–388 (2010)

    Article  Google Scholar 

  29. N. Petermann, N. Stein, G. Schierning, R. Theissmann, B. Stoib, M.S. Brandt, C. Hecht, C. Schulz, H. Wiggers, Plasma synthesis of nanostructures for improved thermoelectric properties. J. Phys. D 44, 17 (2011)

    Article  Google Scholar 

  30. A.J. Simons, T.I. Cox, M.J. Uren, P.D.J. Calcott, The electrical-properties of porous silicon produced from n(+) silicon substrates. Thin Solid Films 255(1-2), 12–15 (1995). Symposium F—Porous Silicon and Related Materials, at the 1994 Spring Conference of the European-Materials-Research-Society, Strasbourg, France, May 24–27, 1994

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the help of D. Pantel with the Hall measurements, the help of K. Sklarek with sample preparation, and financial support from BMBF Project PoSiTeM (03X3539A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. de Boor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Boor, J., Kim, D.S., Ao, X. et al. Thermoelectric properties of porous silicon. Appl. Phys. A 107, 789–794 (2012). https://doi.org/10.1007/s00339-012-6879-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-6879-5

Keywords

Navigation