Skip to main content
Log in

Hot Extruded Polycrystalline Mg2Si with Embedded XS2 Nano-particles (X: Mo, W)

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Due to their abundant, inexpensive and non-toxic constituent elements, magnesium silicide and related alloys are attractive for large-scale thermoelectric (TE) applications in the 500–800 K temperature range, in particular for energy conversion. In this work, we propose a hot extrusion method favorable for large-scale production, where the starting materials (Mg2Si and XS2, X: W, Mo) are milled together in a sealed vial. The MoS2 nano-particles (0.5–2 at.%) act as solid lubricant during the extrusion process, thus facilitating material densification, as confirmed by density measurements based on Archimedes’ method. Scanning electron microscopy images of bulk extruded specimens show a wide distribution of grain size, covering the range from 0.1 μm to 10 μm, and energy dispersive spectroscopy shows oxygen preferentially distributed at the grain boundaries. X-ray diffraction analysis shows that the major phase is the expected cubic structure of Mg2Si. The TE properties of these extruded alloys have been measured by the Harman method between 300 K and 700 K. Resistivity values at 700 K vary between 370 μΩ m and 530 μΩ m. The ZT value reaches a maximum of 0.26 for a sample with 2 at.% MoS2. Heat conductivity is reduced for extruded samples containing MoS2, which most likely behave as scattering centers for phonons. The reason why the WS2 particles do not bring any enhancement, for either densification or heat transfer reduction, might be linked to their tendency to agglomerate. These results open the way for further investigation to optimize the processing parameters for this family of TE alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Gelbstein, Z. Dashevsky, and M.P. Dariel, Phys. B Condens. Matter 396, 16 (2007).

    Article  Google Scholar 

  2. J. Davidow and Y. Gelbstein, J. Electron. Mater. 42, 1542 (2013).

    Article  Google Scholar 

  3. D. Vasilevskiy, R.A. Masut, and S. Turenne, J. Electron. Mater. 41, 1057 (2012).

    Article  Google Scholar 

  4. K. Kirievsky, Y. Gelbstein, and D. Fuks, J. Solid State Chem. 203, 247 (2013).

    Article  Google Scholar 

  5. Y. Gelbstein, N. Tal, A. Yarmek, Y. Rosenberg, M.P. Dariel, S. Ouardi, B. Balke, C. Felser, and M. Köhne, J. Mater. Res. 26, 1919 (2011).

    Article  Google Scholar 

  6. K. Bartholomé, B. Balke, D. Zuckermann, M. Köhne, M. Müller, K. Tarantik, and J. König, J. Electron. Mater. 43, 1775 (2014).

    Article  Google Scholar 

  7. Y. Sadia, L. Dinnerman, and Y. Gelbstein, J. Electron. Mater. 42, 1926 (2013).

    Article  Google Scholar 

  8. M.I. Fedorov, J. Thermoelectr. 2, 51 (2009).

    Google Scholar 

  9. M.B.A. Bashir, S. Mohd Said, M.F.M. Sabri, D.A. Shnawah, and M.H. Elsheikh, Renew. Sustain. Energy Rev. 37, 569 (2014).

    Article  Google Scholar 

  10. M. Brause, B. Braun, D. Ochs, and V. Kempter, Surf. Sci. 398, 184 (1998).

    Article  Google Scholar 

  11. X. Chen, L. Shi, J. Zhou, and J.B. Goodenough, J. Alloys Compd. 641, 30 (2015).

    Article  Google Scholar 

  12. Q.S. Meng, W.H. Fan, R.X. Chen, and Z.A. Munir, J. Alloys Compd. 509, 7922 (2011).

    Article  Google Scholar 

  13. J. Zhao, Z. Liu, J. Reid, K. Takarabe, T. Iida, B. Wang, U. Yoshiya, and J.S. Tse, J. Mater. Chem. A 3, 19774 (2015).

    Article  Google Scholar 

  14. D. Vasilevskiy, M.K. Keshavarz, J. Dufourcq, H. Ihou-Mouko, C. Navonne, R.A. Masut, and S. Turenne, Mater. Today Proc. 2, 523 (2015).

    Article  Google Scholar 

  15. M. Lotfpour, M. Emamy, S.H. Allameh, and B. Pourbahari, Procedia Mater. Sci. 11, 38 (2015).

    Article  Google Scholar 

  16. M.K. Keshavarz, D. Vasilevskiy, R.A. Masut, and S. Turenne, Mater. Charact. 95, 44 (2014).

    Article  Google Scholar 

  17. V. Jayaseelan, K. Kalaichelvan, and S. Vijay Ananth, Procedia Eng. 97, 166 (2014).

    Article  Google Scholar 

  18. N. Satyala, J.S. Krasinski, and D. Vashaee, Acta Mater. 74, 141 (2014).

    Article  Google Scholar 

  19. G. Petzow and V. Carle, Metallographic Etching, 2nd ed. (Materials Park: ASM International, 1999), pp. 116–118.

    Google Scholar 

  20. D. Vasilevskiy, J.M. Simard, R.A. Masut, and S. Turenne, J. Electron. Mater. 44, 1733 (2014).

    Article  Google Scholar 

  21. M.K. Keshavarz, Synthesis and Characterization of Bismuth Telluride-Based Nanostructured Thermoelectric Com- posite Materials (Montreal: Polytechnique Montreal, 2014).

    Google Scholar 

  22. T.M. Tritt, Thermal Conductivity: Theory, Properties, and Applications (Berlin: Springer, 2005), pp. 1–6.

    Google Scholar 

  23. A.J. Minnich, M.S. Dresselhaus, Z.F. Ren, and G. Chen, Energy Env. Sci 2, 466 (2009).

    Article  Google Scholar 

  24. Y. Isoda, S. Tada, H. Kitagawa, and Y. Shinohara, J. Electron. Mater. 45, 1772 (2016).

    Article  Google Scholar 

  25. E. Savary, F. Gascoin, S. Marinel, and R. Heuguet, Powder Technol. 228, 295 (2012).

    Article  Google Scholar 

  26. J. Ichi Tani and H. Kido, Intermetallics 15, 1202 (2007).

    Article  Google Scholar 

  27. J.-Y. Jung, K.-H. Park, and I.-H. Kim, I.O.P. Conf. Ser. Mater. Sci. Eng. 18, 142006 (2011).

    Google Scholar 

  28. D. Stathokostopoulos, D. Chaliampalias, E. Pavlidou, K.M. Paraskevopoulos, K. Chrissafis, and G. Vourlias, J. Therm. Anal. Calorim. 121, 169 (2015).

    Article  Google Scholar 

  29. J. De Boor, T. Dasgupta, H. Kolb, C. Compere, K. Kelm, and E. Mueller, Acta Mater. 77, 68 (2014).

    Article  Google Scholar 

  30. R.D. Schmidt, E.D. Case, J. Giles, J.E. Ni, and T.P. Hogan, J. Electron. Mater. 41, 1210 (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bercegol.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bercegol, A., Christophe, V., Keshavarz, M.K. et al. Hot Extruded Polycrystalline Mg2Si with Embedded XS2 Nano-particles (X: Mo, W). J. Electron. Mater. 46, 2668–2675 (2017). https://doi.org/10.1007/s11664-016-4868-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4868-8

Keywords

Navigation