Skip to main content
Log in

Local Strain Distribution and Microstructure of Grinding-Induced Damage Layers in SiC Wafer

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The high-angular-resolution electron backscatter diffraction (HR-EBSD) technique has been utilized to evaluate the elastic strain distribution of grinding-induced damage layers in silicon carbide wafers. HR-EBSD analysis, along with transmission electron microscopy observation, revealed that the damage layers formed beneath the wafer surface when the surface was ground by diamond abrasives; the layers were classified hierarchically based on the distribution of elastic strain and lattice defects. In particular, very large elastic strain formed in a defective region of roughly 0.6 μm in thickness, just beneath the ground wafer surface, where lattice defects such as dislocations, stacking faults, and microcracks were introduced inhomogeneously by abrasive interaction and related plastic deformation and fracture. Based on this inhomogeneity, the defective region was itself classified into two types: one, a highly defective region with very large, complicated strain and high defect density; and the other, a basal plane dislocation (BPD)-glide region, with small strain and few BPDs or stacking faults. Beneath the defective region, a strain gradient region of roughly 1.8 μm in thickness, which was unambiguously identified by HR-EBSD strain analysis alone, revealed a monotonic gradient in the dominant compressive strain component, with no grinding-induced defects. Overall, HR-EBSD analysis revealed a nanometer-scale, hierarchical elastic strain distribution in the grinding-induced damage layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Goel, J. Phys. D Appl. Phys. 47, 243001 (2014).

    Article  Google Scholar 

  2. D. Goloni and S.D. Jacobs, Appl. Opt. 30, 2761 (1991).

    Article  Google Scholar 

  3. J.C. Lambropoulos, S. Xu, T. Fang, and D. Golini, Appl. Opt. 35, 5704 (1996).

    Article  CAS  Google Scholar 

  4. K. Tamura, M. Sasaki, C. Kudou, T. Yamashita, H. Sako, H. Asamizu, S. Ito, K. Kojima, and M. Kitabatake, Mater. Sci. Forum 821–823, 367 (2015).

    Article  Google Scholar 

  5. M. Sasaki, H. Matsuhata, K. Tamura, H. Sako, K. Kojima, H. Yamaguchi, and M. Kitabatake, Jpn. J. Appl. Phys. 54, 091301 (2015).

    Article  Google Scholar 

  6. W. Qian, M. Skowronski, G. Augustine, R.C. Glass, H.M. Hobgood, and R.H. Hopkins, J. Electrochem. Soc. 142, 4290 (1995).

    Article  CAS  Google Scholar 

  7. J.R. Grim, M. Benamara, M. Skowronski, W.J. Everson, and V.D. Heydemann, Semicond. Sci. Technol. 21, 1709 (2006).

    Article  CAS  Google Scholar 

  8. H. Sako, H. Matsuhata, M. Sasaki, M. Nagaya, T. Kido, K. Kawata, T. Kato, J. Senzaki, M. Kitabatake, and H. Okumura, J. Appl. Phys. 119, 135702 (2016).

    Article  Google Scholar 

  9. Y. Ishikawa, Y.Z. Yao, Y. Sugawara, K. Sato, Y. Okamoto, N. Hayashi, B. Dierre, K. Watanabe, and T. Sekiguchi, Jpn. J. Appl. Phys. 53, 071301 (2014).

    Article  Google Scholar 

  10. B. Meng, Y. Zhang, and F. Zhang, Appl. Phys. A 122, 247 (2016).

    Article  Google Scholar 

  11. E.K. Sanchez, S. Ha, J. Grim, M. Skowronski, W.M. Vetter, M. Dudley, R. Bertke, and W.C. Mitchel, J. Electrochem. Soc. 149, G131 (2002).

    Article  CAS  Google Scholar 

  12. P. Vicente, D. David, and J. Camassel, Mater. Sci. Eng., B 80, 348 (2001).

    Article  Google Scholar 

  13. S. Nakashima, T. Kato, S. Nishizawa, T. Mitani, H. Okumura, and T. Yamamoto, J. Electrochem. Soc. 153, G319 (2006).

    Article  CAS  Google Scholar 

  14. S. Nakashima, T. Mitani, M. Tomobe, T. Kato, and H. Okumura, AIP Adv. 6, 015207 (2016).

    Article  Google Scholar 

  15. D.B. Williams and C.B. Carter, Transmission Electron Microscopy, 2nd ed. (New York: Springer, 2009), pp. 347–368.

    Google Scholar 

  16. A.J. Wilkinson, J. Electron Microsc. 49, 299 (2000).

    Article  CAS  Google Scholar 

  17. A.J. Wilkinson, G. Maeden, and D.J. Dingley, Ultramicroscopy 106, 307 (2006).

    Article  CAS  Google Scholar 

  18. A.J. Wilkinson, D.J. Dingley, and G. Maeden, Strain mapping using electron backscatter diffraction.Electron Backscatter Diffraction in Materials Science, 2nd ed., ed. A.J. Schwartz, M. Kumar, B.L. Adams, and D.P. Field (New York: Springer, 2009), pp. 231–249.

    Chapter  Google Scholar 

  19. K. Ashida, D. Dojima, Y. Kutsuma, S. Torimi, S. Nogami, Y. Imai, S. Kiumura, J. Mizuki, N. Ohtani, and T. Kaneko, MRS Adv. (2016). https://doi.org/10.1557/adv.2016.433.

    Article  Google Scholar 

  20. K. Li and T.W. Liao, J. Mater. Process. Technol. 57, 207 (1996).

    Article  CAS  Google Scholar 

  21. R.F. Cook and G.M. Pharr, J. Am. Ceram. Soc. 73, 787 (1990).

    Article  CAS  Google Scholar 

  22. B.R. Lawn, B.J. Hockey, and S.M. Wiederhorn, J. Mater. Sci. 15, 1207 (1980).

    Article  CAS  Google Scholar 

  23. H. Tanaka and Y. Bando, J. Am. Ceram. Soc. 73, 761 (1990).

    Article  CAS  Google Scholar 

  24. S.I. Wright, M.M. Nowell, and D.P. Field, Microsc. Microanal. 17, 316 (2011).

    Article  CAS  Google Scholar 

  25. J.P. Hirth and J. Lothe, Theory of Dislocations, 2nd ed. (New York: Wiley, 1982).

    Google Scholar 

  26. S. Markin and T.W. Hwang, Ann. CIRP 45, 569 (1996).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Council for Science, Technology, and Innovation (CSTI), the Cross-ministerial Strategic Innovation Promotion Program (SIP): “Next-generation power electronics/Consistent R&D of next-generation SiC power electronics,” of which the funding agency is the New Energy and Industrial Technology Development Organization (NEDO). A part of this work was supported by NIMS microstructural characterization platform (NMCP) as a program of the “Nanotechnology Platform” of the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan. The authors thank Yoshinori Yamaguchi, Takehide Oda, and Atsuki Kon of JFE Techno-Research Corporation for their expert assistance with HR-EBSD measurements and TEM specimen preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susumu Tsukimoto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsukimoto, S., Ise, T., Maruyama, G. et al. Local Strain Distribution and Microstructure of Grinding-Induced Damage Layers in SiC Wafer. J. Electron. Mater. 47, 6722–6730 (2018). https://doi.org/10.1007/s11664-018-6585-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6585-y

Keywords

Navigation