Skip to main content

Strain Mapping Using Electron Backscatter Diffraction

  • Chapter
  • First Online:
Electron Backscatter Diffraction in Materials Science

In this chapter we review the progress that has been made toward elastic strain (i.e., stress) mapping using electron backscatter diffraction. In particular we focus on development of an analysis method based on using cross-correlation to determine small shifts in the EBSD patterns with respect to a reference pattern. The pattern shifts are determined at many subregions dispersed across the wide angular span of the EBSD pattern, and the magnitude and angular distribution of shifts allows the strain and rotation tensor to be determined. Pattern shifts at a resolution of ±0.05 pixels, or in some cases even better, have been reported, which corresponds to a sensitivity of ∼±10–4 in the components of the strain and rotation tensor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Further information concerning CrossCourt software is available from BLG Productions Ltd, Bristol, UK (www.blgproductions.co.uk)

References

  • Bate PS, Knutsen RD, Brough I, Humphreys FJ (2005) The characterization of low-angle boundaries by EBSD. J Microsc 220:36–46

    Article  CAS  PubMed  MathSciNet  Google Scholar 

  • Bowen DK, Tanner BK (1995) A method for the accurate comparison of lattice parameters. J Appl Crystallogr 28:753–760

    Article  CAS  Google Scholar 

  • Clarke EE (2008) Internal stresses and dislocation densities generated by phase transformations in steel. D. Phil. Thesis, University of Oxford

    Google Scholar 

  • Da Fonseca JQ, Mummery PM, Withers PJ (2005) Full-field strain mapping by optical correlation of micrographs acquired during deformation. J Microsc 218:9–21

    Article  MathSciNet  Google Scholar 

  • Davidson DL (1991) Measurement of microdisplacements by machine vision photogrammetry (DISMAP). Rev Sci Instrum 62:1270–1279

    Article  ADS  Google Scholar 

  • Di Fonzo S, Jark W, Lagomarsino S, Giannini C, De Caro L, Cedola A, Muller M (2000) Non-destructive determination of local strain with 100-nanometre spatial resolution. Nature 403:638–640

    Article  PubMed  ADS  CAS  Google Scholar 

  • Dietrich D, Bugiel E, Osten HJ, Zaumseil P (1993) Raman investigations of elastic strain relief in Si1-xGex layers on patterned silicon substrate. J Appl Phys 74:7223–7227

    Article  CAS  ADS  Google Scholar 

  • Fan LX, Guo DL, Ren F, Xiao XH, Cai GX, Fu Q, Jiang CZ (2007) The use of electron backscatter diffraction to measure the elastic strain fields in a misfit dislocation-free InGaAsP/InP heterostructure. J Phys D Appl Phys 40: 7302–7305

    Article  CAS  ADS  Google Scholar 

  • Fincharm AM, Spedding GR (1997) Low cost, high resolution DPIV for measurement of turbulent fluid flow. Exp Fluids 23:449–462

    Article  Google Scholar 

  • Ishido T, Matsuo H, Katayama T, Ueda T, Inoue K, Ueda D (2007) Depth profiles of strain in AlGaN/GaN heterostructures grown on Si characterized by electron backscatter diffraction technique. IEICE Electron Expr 4:775–781

    Article  Google Scholar 

  • Kang KJ, Yao N, He MY, Evans AG (2003) A method for in situ measurement of the residual stress in thin films by using the focused ion beam. Thin Solid Films 443:71–77

    Article  CAS  ADS  Google Scholar 

  • Keller RR, Roshko A, Geiss RH, Bertness KA, Quinn TP (2004) EBSD measurement of strains in GaAs due to oxidation of buried AlGaAs layers. Microelectron Eng 75:96–102

    Article  CAS  Google Scholar 

  • Kinaev NN, Cousens D, Atrens A (1999) The crack tip strain field of AISI 4340: Part I: Measurement technique. J Mater Sci 34:4909–4920

    Article  CAS  Google Scholar 

  • Kozubowski JA, Keller RR, Gerberich WW (1991) Effects of tetragonal distortion in thin epitaxic films on electron channelling patterns in scanning electron microscopy. J Appl Crystallogr 24:102–107

    Article  CAS  Google Scholar 

  • Kröner E (1958) Kontinuumstheorie der Versetzungen und Eigenspannungen. Ergebnisse der Angewandten Mathematik, Vol. 5. Springer-Verlag, Berlin. English: Raasch I, Hartley CS (trans) Continuum theory of dislocation and self stresses. United States Office of Naval Research, Washington, DC

    Google Scholar 

  • Landon CD, Adams BL, Kacher J (2008) High-resolution methods for characterizing mesoscale dislocation structures. J Eng Mater-T ASME 130:021004

    Article  CAS  Google Scholar 

  • Luo JF, Ji Y, Zhong TX, Zhang YQ, Wang JZ, Liu JP, Niu NH, Han J, Guo X, Shen JD (2006) EBSD measurements of elastic strain fields in a GaN/sapphire structure. Microelectron Reliab 46:178–182

    Article  CAS  Google Scholar 

  • Luryi S, Suhir E (1986) New approach to the high-quality epitaxial-growth of lattice-mismatched materials. Appl Phys Lett 49:140–142

    Article  CAS  ADS  Google Scholar 

  • Madden MC, Hren JJ (1985) Fine structure in electron channeling. J Microsc 139:1–17

    CAS  Google Scholar 

  • Maier HJ, Keller RR, Renner H, Mughrabi H, Preston A (1996) On the unique evaluation of local lattice parameters by convergent beam electron diffraction. Phil Mag A 74: 23--43

    Google Scholar 

  • Maurice C, Fortunier R (2008) A 3D Hough transform for indexing EBSD and Kossel patterns. J Microsc 230:520–529

    Article  CAS  PubMed  MathSciNet  Google Scholar 

  • Miyamoto G, Shibata A, Maki T, Furuhara T (2007) Precise measurement of accommodation strain in austenite surrounding martensite by electron backscatter diffraction. Proceedings 1st International Symposium on Steel Science, The Iron & Steel Institute of Japan

    Google Scholar 

  • Nye JF (1953) Some geometrical relations in dislocated crystals. Acta Metall 1:153–162

    Article  CAS  Google Scholar 

  • Prior DJ (1999) Problems in determining the misorientation axes, for small angular misorientations, using electron backscatter diffraction in the SEM. J Microsc 195:217–225

    Article  PubMed  Google Scholar 

  • Randman D (2006) A nanoindentation study of slip transfer at grain boundaries. Part II thesis, Department of Materials, University of Oxford

    Google Scholar 

  • Sabate N, Vogel D, Gollhardt A, Keller J, Cane C, Gracia I, Morante JR, Michel B (2006) Measurement of residual stress by slot milling with focused ion-beam equipment. J Micromech Microeng 16:254–259

    Article  CAS  Google Scholar 

  • Stone HJ, Withers PJ, Holden TM, Roberts SM, Reed RC (1999) Comparison of three different techniques for measuring the residual stresses in an electron beam-welded plate of WASPALOY. Metall Trans A 30:1797–1808

    Article  Google Scholar 

  • Sun S, Adams BL, King WE (2000) Observations of lattice curvature near the interface of a deformed aluminium bicrystal. Philos Mag A 80:9–25

    ADS  Google Scholar 

  • Tamura N, Celestre RS, MacDowell AA, Padmore HA, Spolenak R, Valek BC, Chang NM, Manceau A, Patel JR (2002) Submicron X-ray diffraction and its applications to problems in materials and environmental science. Rev Sci Instrum 73:1369–1372

    Article  CAS  ADS  Google Scholar 

  • Tao X, Eades A (2005) Measurement and mapping of small changes of crystal orientation by electron backscattering diffraction. Microsc Microanal 11:341–353

    CAS  PubMed  ADS  Google Scholar 

  • Troost KZ, van der Sluis P, Gravesteijn DJ (1993) Microscale elastic-strain determination by backscatter Kikuchi diffraction in the scanning electron microscope. Appl Phys Lett 62:1110–1112

    Article  CAS  ADS  Google Scholar 

  • Vaudin MD, Gerbig YB, Stranick SJ, Cook RF (2008) Comparison of nanoscale measurements of strain and stress using electron back scattered diffraction and confocal Raman microscopy. Appli Phys Lett 93:193116

    Google Scholar 

  • Wilkinson AJ (1996) Measurement of elastic strains and small lattice rotations using electron backscatter diffraction. Ultramicroscopy 62:237–247

    Article  CAS  Google Scholar 

  • Wilkinson AJ (1997) Methods for determining elastic strains from electron backscatter diffraction and electron channelling patterns. Mater Sci Tech 13:79–84

    CAS  Google Scholar 

  • Wilkinson AJ (1999) Measurement of small misorientations using electron backscatter diffraction. Proceedings of the electron microscopy and analysis.group conference. Inst Phys Conf Ser 161:115–118

    CAS  Google Scholar 

  • Wilkinson AJ (2000a) Measuring strains using electron backscatter diffraction. In: Schwartz AJ, Kumar M, Adams BL (eds) Electron backscatter diffraction in materials science. Kluwer Academic/Plenum Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Wilkinson AJ (2000b) Advances in SEM based diffraction studies of defects and strains in semiconductors. J Electron Microsc 49:299–310

    CAS  MathSciNet  Google Scholar 

  • Wilkinson AJ (2000c) Electron backscatter diffraction: Probing strains at high spatial resolution. Proceedings of the sixth international conference on residual stresses, Oxford, July 2000, vol. 1, pp 625–632, IOM Communications, London

    Google Scholar 

  • Wilkinson AJ (2001) A new method for determining small misorientations from electron backscatter diffraction patterns. Scripta Mater 44:2379–2385

    Article  CAS  Google Scholar 

  • Wilkinson AJ (2006) High resolution measurements of strain and tilt distributions in SiGe mesas using electron backscatter diffraction. Appl Phys Lett 89:241910

    Article  ADS  CAS  Google Scholar 

  • Wilkinson AJ, Meaden G, Dingley DJ (2006a) High resolution elastic strain measurement from electron backscatter diffraction patterns: New levels of sensitivity. Ultramicroscopy 106:303–313

    Article  CAS  Google Scholar 

  • Wilkinson AJ, Meaden G, Dingley DJ (2006b) High resolution mapping of strains and rotations using electron backscatter diffraction. Mater Sci Technol 22:1271–1278

    Article  CAS  Google Scholar 

  • Wu D, Guo X, Gu X-L, Li Y-B, Shen G-D (2007) Strain field in GaAs/GaN wafer-bonding interface and its microstructure. Chinese Phys Lett 24:3481–3484

    Article  CAS  ADS  Google Scholar 

  • Yamaguchi M, Tachikawa M, Sugo M, Kondo S, Itoh Y (1990) Analysis for dislocation density reduction in selective area grown GaAs films on Si substrates. Appl Phys Lett 56: 27–29

    Article  CAS  ADS  Google Scholar 

  • Young RJ (1997) Analysis of composites using Raman and fluorescence microscopy—a review. J Microsc 185: 199–205

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Mark Vaudin (NIST), Mr. Teruki Ishido (Matsushita Electric Industrial Co.), Dr. Cathy Vartulli (Texas Instruments), Mr. Benjamin Britton (Oxford University), Mr. David Randman (Oxford University), and Dr. Eleanor Clarke (Oxford University) for enjoyable and insightful discussion during development and application of this technique.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angus J. Wilkinson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wilkinson, A.J., Dingley, D.J., Meaden, G. (2009). Strain Mapping Using Electron Backscatter Diffraction. In: Schwartz, A., Kumar, M., Adams, B., Field, D. (eds) Electron Backscatter Diffraction in Materials Science. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-88136-2_17

Download citation

Publish with us

Policies and ethics