Skip to main content
Log in

Low Temperature Flip Chip Bonding Using Squeegee-Embedded Au Nanoporous Bump Activated by VUV/O3 Treatment

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This paper describes low-temperature bonding realized by squeegee-embedded Au nanoporous bumps that were activated by vacuum ultraviolet in the presence of oxygen (VUV/O3). The VUV/O3 technology is confirmed to be a suitable surface treatment technique for Au nanoporous bump bonding because it maintains the highly reactive surface of the Au nanoporous bumps during the treatment. X-ray photoelectron spectroscopy confirmed that the VUV/O3 treatment was capable of removing organic contamination on the nanoporous surface, and scanning electron microscopy images showed that the ligament size of the nanoporous bumps stayed the same. After bonding, the ligament size of the VUV/O3-treated nanoporous structure grew to 54 nm compared with 27 nm for the untreated samples. This increase in ligament size was attributed to the improvement in nanoporous coalescence by removing organic contamination that obstructed Au atom diffusion. Furthermore, the highest strength of the VUV/O3-treated samples reached 8.9 MPa at a low temperature of 200°C, which was three times higher than that of the untreated sample. This technology is expected to assist manufacturing of future 3-D integrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Sakuma, P.S. Andry, C.K. Tsang, S.L. Wright, B. Dang, C.S. Patel, B.C. Webb, J. Maria, E.J. Sprogis, S.K. Kang, R.J. Polastre, R.R. Horton, and J.U. Knickerbocker, IBM J. Res. Dev. 52, 611 (2008).

    Article  Google Scholar 

  2. E. Higurashi, T. Imamura, T. Suga, and R. Sawada, IEEE Photon. Technol. Lett. 19, 1994 (2007).

    Article  Google Scholar 

  3. H.A.C. Tilmans, M.D.J. Van De Peer, and E. Beyne, J. Microelectromech. Syst. 9, 206 (2000).

    Article  Google Scholar 

  4. M.J. Wolf, G. Engelmann, L. Dietrich, and H. Reichl, Nucl. Instrum. Methods Phys. Res. Sect. A 565, 290 (2006).

    Article  Google Scholar 

  5. C.T. Ko and K.N. Chen, Microelectron. Reliab. 52, 302 (2012).

    Article  Google Scholar 

  6. J.W. Jang, L. Li, P. Bowles, R. Bonda, and D.R. Frear, Microelectron. Reliab. 52, 455 (2012).

    Article  Google Scholar 

  7. H. Alarifi, A. Hu, M. Yavuz, and Y.N. Zhou, J. Electron. Mater. 40, 1394 (2011).

    Article  Google Scholar 

  8. K. Suganuma, S. Sakamoto, N. Kagami, D. Wakuda, K.S. Kim, and M. Nogi, Microelectron. Reliab. 52, 375 (2012).

    Article  Google Scholar 

  9. W. Fu, M. Nimura, T. Kasahara, H. Mimatsu, A. Okada, S. Shoji, S. Ishizuka, and J. Mizuno, J. Electron. Mater. 44, 4646 (2015).

    Article  Google Scholar 

  10. P.I. Wang, S.H. Lee, T.C. Parker, M.D. Frey, T. Karabacak, J.Q. Lu, and T.M. Lu, Electrochem. Solid-State Lett. 12, H138 (2009).

    Article  Google Scholar 

  11. H. Oppermann and L. Dietrich, Microelectron. Reliab. 52, 356 (2012).

    Article  Google Scholar 

  12. W.S. Wang, Y.C. Lin, T. Gessner, and M. Esashi, Jpn. J. Appl. Phys. 54, Art. No. 030215 (2015).

  13. H. Mimatsu, J. Mizuno, T. Kasahara, M. Saito, H. Nishikawa, and S. Shoji, Jpn. J. Appl. Phys. 52, Art. No. 050204 (2013).

  14. K. Matsunaga, M.S. Kim, H. Nishikawa, M. Saito, and J. Mizuno, in ICEP-IAAC Conference Proceedings, pp. 830–833 (2015).

  15. H. Mimatsu, J. Mizuno, T. Kasahara, M. Saito, S. Shoji, and H. Nishikawa, in MEMS Conference Proceedings pp. 1131–1134 (2014).

  16. T. Kaneda, J. Mizuno, A. Okada, K. Matsunaga, S. Shoji, M. Saito, and H. Nishikawa, in ICEP-IAAC Conference Proceedings, pp. 473–477 (2015).

  17. J. Erlebacher, M.J. Aziz, A. Karma, N. Dimitrov, and K. Sieradzki, Nature 410, 450 (2001).

    Article  Google Scholar 

  18. Y.H. Tan, J.A. Davis, K. Fujikawa, N.V. Ganesh, A.V. Demchenko, and K.J. Stine, J. Mater. Chem. 22, 6733 (2012).

    Article  Google Scholar 

  19. E. Higurashi, D. Chino, T. Suga, and R. Sawada, IEEE J. Sel. Top. Quantum Electron. 15, 1500 (2009).

    Article  Google Scholar 

  20. A. Shigetou, T. Itoh, and T. Suga, J. Mater. Sci. 40, 3149 (2005).

    Article  Google Scholar 

  21. K. Sakuma, J. Mizuno, N. Nagai, N. Unami, S. Shoji, and I.E.E.E. Trans, Electron. Packag. Manuf. 33, 212 (2010).

    Article  Google Scholar 

  22. N. Unami, K. Sakuma, J. Mizuno, and S. Shoji, Jpn. J. Appl. Phys. 49, 06GN121 (2010).

  23. A. Okada, S. Shoji, M. Nimura, A. Shigetou, K. Sakuma, and J. Mizuno, Mater. Trans. 54, 2139 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

This work is partly supported by Japan Ministry of Education, Culture, Sports Science and Technology (MEXT) Grant-in-Aid for Scientific Basic Research (A) No. 16H02349 and Scientific Basic Research (B) No. 25289841. The authors thank the MEXT Nanotechnology Platform Support Project of Waseda University. The author W. Fu also acknowledges the Leading Graduate Program in Science and Engineering, Waseda University from MEXT, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Mizuno.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, W., Kaneda, T., Okada, A. et al. Low Temperature Flip Chip Bonding Using Squeegee-Embedded Au Nanoporous Bump Activated by VUV/O3 Treatment. J. Electron. Mater. 47, 5952–5958 (2018). https://doi.org/10.1007/s11664-018-6462-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6462-8

Keywords

Navigation