Skip to main content
Log in

Investigation of Various Bumps and Redistribution Lines to Inhibit Protected Silicon Nitride Cracks in High Pattern Density Chip Package

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Mechanical stress related to chip packaging failure is the most common reliability issue in semiconductor devices, especially for high pattern density of very-large-scale integration. In this paper, redistribution lines (RDL) corresponding to gold and copper materials with capped layers (Sn-Ag and Au-Ni) were evaluated to investigate the structure dependency on the mechanical properties of intermetallic compounds, and to provide a solution to improve chip package reliability in regard to protect Si3N4 cracks. The simulation results revealed that a thicker Si3N4 film combined with the corner rounding of bump/RDL structures could mitigate Si3N4 film cracks. Voids induced by the fine pitch configuration of the top Al increase the potential risk of Si3N4 cracks during chip packaging. The reflow temperature is a major factor increasing the thermal stress in RDL patterns rather than from the bump structure. A high temperature storage test applied to the Cu pillar/Sn-Ag capping was used to investigate the intermetallic compound growth, shear strength, and hardness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.P.H. Hu, M.L. Fan, P. Su, and C.T. Chuang, IEEE Trans. Electron Devices 62, 1710 (2005).

    Article  Google Scholar 

  2. S.H. Rasouli, H.F. Dadgour, K. Endo, and H. Koike, IEEE Trans. Electron Devices 57, 2934 (2010).

    Article  Google Scholar 

  3. M.H. Wong, K. Sasaki, A. Kuramata, S. Tamakoshi, and M. Higashiwaki, IEEE Electron Device Lett. 37, 212 (2016).

    Article  CAS  Google Scholar 

  4. H.W. Yao, K.Y. Yiang, P. Justison, M. Rayasam, O. Aubel, and J. Poppe, Appl. Phys. 110, 073504 (2011).

    Article  Google Scholar 

  5. C.J. Wilson, K. Croes, C. Zhao, T.H. Metzger, L. Zhao, G.P. Beyer, A.B. Horsfall, A.G. O’Neill, and Z. Tőkei, J. Appl. Phys. 106, 053524 (2009).

    Article  Google Scholar 

  6. M.Y. Yan and K.N. Tu, Appl. Phys. Lett. 87, 261906 (2005).

    Article  Google Scholar 

  7. A. Heryanto, K.L. Pey, Y.K. Lim, W. Liu, N. Raghavan, J. Wei, C.L. Gan, M.K. Lim, and J.B. Tan, J. Appl. Phys. 109, 013716 (2011).

    Article  Google Scholar 

  8. W.J. Choi, E.C.C. Yeh, and K.N. Tu, J. Appl. Phys. 94, 5665 (2003).

    Article  CAS  Google Scholar 

  9. H.Y. Hsiao and C. Chen, Appl. Phys. Lett. 90, 152105 (2007).

    Article  Google Scholar 

  10. S.W. Liang, Y.W. Chang, and C. Chen, Appl. Phys. Lett. 88, 172108 (2006).

    Article  Google Scholar 

  11. J.W. Jang, C.Y. Liu, P.G. Kim, K.N. Tu, A.K. Mal, and D.R. Frear, J. Mater. Res. 15, 1679 (2000).

    Article  CAS  Google Scholar 

  12. L. Meinshausen, K. Weide-Zaage, and M. Petzold, IEEE 61st Electronic Components and Technology Conference (ECTC) (2011), pp. 1444–1451.

  13. L. Wang, J. Wang, and F. Xiao, J. Electron. Packag. 141, 011003 (2019).

    Article  CAS  Google Scholar 

  14. J.W. Shin, I. Kim, and Y.W. Choi, Microelectron. Reliab. 55, 432 (2015).

    Article  CAS  Google Scholar 

  15. M. Pharr, K. Zhao, Z. Suo, F.Y. Ouyang, and P. Liu, J. Appl. Phys. 110, 083716 (2011).

    Article  Google Scholar 

  16. C.W. Chang, C.V. Thompson, C.L. Gan, K.L. Pey, W.K. Choi, and Y.K. Lim, Appl. Phys. Lett. 90, 193505 (2007).

    Article  Google Scholar 

  17. K.M. Chen and T.S. Lin, J. Mater. Sci. Mater. Electron. 21, 278 (2010).

    Article  CAS  Google Scholar 

  18. C. Yang, L. Wang, K.H. Yu, J. Wang, F. Xiao, and W.Q. Zhang, J. Mater. Sci. Mater. Electron. 29, 16416 (2018).

    Article  CAS  Google Scholar 

  19. J.Y.H. Chia, B. Cotterell, and T.C. Chia, Mater. Sci. Eng. A 417, 259 (2006).

    Article  Google Scholar 

  20. J.W. Kim, D.G. Kim, and S.B. Jung, Microelectron. Reliab. 46, 535 (2006).

    Article  CAS  Google Scholar 

  21. C.Y. Ho, Mater. Sci. Semicond. Process. 49, 1 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching-Yuan Ho.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 532 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ho, CY., Cheng, H., Chang, YC. et al. Investigation of Various Bumps and Redistribution Lines to Inhibit Protected Silicon Nitride Cracks in High Pattern Density Chip Package. J. Electron. Mater. 49, 5613–5621 (2020). https://doi.org/10.1007/s11664-020-08310-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08310-8

Keywords

Navigation