Skip to main content
Log in

Barrier Inhomogeneities in n-ZnO/p-Si Heterojunctions Fabricated with ZnO Nanorods

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The p-Si/n-ZnO nanoheterostructures were prepared by the sol–gel and hydrothermal method. The structural characterization carried out by the x-ray diffraction and field emission scanning electron microscope confirms the growth of ZnO nanorods on p-type silicon substrate. The current–voltage (IV) characteristics of the junction show a rectifying diode-like behavior. The analysis indicates the presence of a high value of series resistance (3.2 KΩ) at the interface. The barrier height extracted from the temperature variation study using the thermionic emission model was of the order of 167.7 meV and the Richardson constant value was of the order of 1.1096E−6 A cm−2 K−2 which is much lower than the standard value, i.e., 32 A cm−2 K−2 for ZnO. Such a discrepancy has been resolved and explained using the Gaussian distribution of barrier heights. The refined value of the barrier height and Richardson constant as calculated from the modified Richardson plot was 1.24 eV and 35.16 A cm−2 K−2, respectively. These are in agreement with the standard reported values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.H. He and C.H. Ho, Appl. Phys. Lett. 91, 233105 (2007).

    Article  Google Scholar 

  2. A. Kargar, K. Sun, Y. Jing, C. Choi, H. Jeong, Y. Zhou, K. Madsen, P. Naughton, S. Jin, G.Y. Jung, and D. Wang, Nano Lett. 13, 3017 (2013).

    Article  Google Scholar 

  3. O. Lupan, T. Pauporté, and B. Viana, J. Phys. Chem. C 114, 14781 (2010).

    Article  Google Scholar 

  4. C. Saraswati and S.B. Krupanidhi, Thin Solid Films 520, 5894 (2012).

    Article  Google Scholar 

  5. S. Joydip, A. Ahmed, and R. Labar, Mater. Lett. 109, 265 (2013).

    Article  Google Scholar 

  6. D. Polsongkram, P. Chaminole, S. Pukird, L. Chow, O. Lupan, G. Chai, H. Khallat, S. Park, and A. Schutte, Phys. B 403, 3713 (2008).

    Article  Google Scholar 

  7. U. Thupakula, A. Jena, A.H. Khan, A. Dalui, and S. Acharya, J. Nanopart. Res. 14, 701 (2012).

    Article  Google Scholar 

  8. K.H. Kim, K. Utashiro, Y. Abe, and M. Kawamura, Int. J. Electrochem. Sci. 9, 2080 (2014).

    Google Scholar 

  9. S. Sashikanth and C. Perisamy, Superlattices Microstructures 73, 12 (2014).

    Article  Google Scholar 

  10. S. Mamta and S.K. Tripathi, J. Appl. Phys. 112, 024521 (2012).

    Article  Google Scholar 

  11. S. Majumdar and P. Banerji, J. Appl. Phys. 105, 043704 (2009).

    Article  Google Scholar 

  12. S. Al-Heniti, R.I. Badran, A.A. Al-Ghamedi, and F.A. Al-Agel, Adv. Sci. Lett. 4, 1 (2011).

    Article  Google Scholar 

  13. I. Hussain, M.Y. Soomro, N. Bano, O. Nur, and M. Willander, J. Appl. Phys. 113, 234509 (2013).

    Article  Google Scholar 

  14. D.E. Yildiz, S. Altindal, and H. Kansbur, J. Appl. Phys. 103, 124502 (2008).

    Article  Google Scholar 

  15. D. Somvanshi and S. Jit, IEEE Trans. Nanotechnology 13, 62 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapas Kumar Kundu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Labar, R., Kundu, T.K. Barrier Inhomogeneities in n-ZnO/p-Si Heterojunctions Fabricated with ZnO Nanorods. J. Electron. Mater. 47, 3628–3633 (2018). https://doi.org/10.1007/s11664-018-6209-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6209-6

Keywords

Navigation