Skip to main content
Log in

Synthesis, structure and electronic properties of ultranarrow CdS nanorods

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We report on the one-step synthesis of ultra narrow wurtzite CdS nanorods using bench top chemical decomposition route. The synthesized CdS nanorods are of 1.8 nm in diameter and show major confinement along the radial dimension, which is well below the exciton Bohr radius of bulk CdS (2.5 nm). Structural and self-assembly properties of nanorods are studied using X-ray Diffraction (XRD) and small angle X-ray scattering (SAXS) measurements, which reveal preferred orientation of the nanorods along <00.2> direction with 2D supercrystalline spatial distribution. The estimated nanorod dimensions from XRD is corroborated with the transmission electron microscopy observations. UV–vis and photoluminescence spectroscopy reveals significant increase in the band gap in comparison to bulk CdS which is further tallied with the simulations using effective mass approximation (EMA). Formation of discrete structure of valence band and conduction band due to strongly quantum confined excitons in the radial direction is evidenced from EMA simulation. Combination of experimental and theoretical approach helps in understanding the structure–property relationship for ultranarrow CdS rods which might lead to nanorod based applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

XRD:

X-ray diffraction

SAXS:

Small angle X-ray scattering

TEM:

Transmission electron microscopy

PL:

Photoluminescence

VB:

Valence band

CB:

Conduction band

EMA:

Effective mass approximation

HDA:

Hexadecylamine

FWHM:

Full width at half maximum

HRTEM:

High resolution TEM

CBM:

Conduction band minimum

VBM:

Valence band maximum

References

  • Acharya S, Efrima S (2005) Two dimensional pressure driven Nanorod-to-Nanowire reactions in Langmuir monolayers at room temperature. J Am Chem Soc 127:3486–3490

    Article  CAS  Google Scholar 

  • Acharya S, Patla I, Kost J, Efrima S, Golan Y (2006a) Switchable assembly of ultra narrow CdS nanowires and nanorods. J Am Chem Soc 128:9294–9295

    Article  CAS  Google Scholar 

  • Acharya S, Panda AB, Belman N, Efrima S, Golan Y (2006b) A Semiconductor nanowire assembly of ultrahigh junction density by the Langmuir–Blodgett technique. Adv Mater 18:210–213

    Article  CAS  Google Scholar 

  • Acharya S, Panda AB, Efrima S, Golan Y (2007) Polarization properties and switchable assembly of ultranarrow ZnSe nanorods. Adv Mater 19:1105–1108

    Article  CAS  Google Scholar 

  • Acharya S, Gautam UK, Sasaki T, Bando Y, Golan Y, Ariga K (2008) Ultranarrow PbS nanorods with intense fluorescence. J Am Chem Soc 130:4594–4595

    Article  CAS  Google Scholar 

  • Acharya S, Kundu S, Hill JP, Richards GJ, Ariga K (2009a) Nanorod-driven orientational control of liquid crystal for polarization-tailored electro-optic devices. Adv Mater 21:989–993

    Article  CAS  Google Scholar 

  • Acharya S, Sarma DD, Golan Y, Sengupta S, Ariga K (2009b) Shape-dependent confinement in ultrasmall zero, one, and two-dimensional PbS nanostructures. J Am Chem Soc 131:11282–11283

    Article  CAS  Google Scholar 

  • Artemyev MV, Sperling V, Woggon U (1997) Electroluminescence in thin solid films of closely packed CdS nanocrystals. J Appl Phys 81:6975–6977

    Article  CAS  Google Scholar 

  • Banin U, Cao YW, Katz D, Millo O (1999) Identication of atomic like electronic states in indium arsenide nanocrystal quantum dots. Nature 400:542–544

    Article  CAS  Google Scholar 

  • Belman N, Acharya S, Konovalov O, Vorobiev A, Israelachvili J, Efrima S, Golan Y (2008) Hierarchical assembly of ultranarrow alkylamine coated ZnS nanorods: A synchrotron surface X-ray diffraction study. Nano Lett 8:3858–3864

    Article  CAS  Google Scholar 

  • Birner S, Hackenbuchner S, Sabathil M, Zandler G, Majewski JA, Andlauer T, Zibold T, Morschl R, Trellakis A, Vogl P (2006) Modeling of semiconductor nanostructures with nextnano3. Acta Phys Polo A 110:111–124

    CAS  Google Scholar 

  • Chu H, Li X, Chen G, Zhou W, Zhang Y, Jin Z, Xu J, Li Y (2005) Shape controlled synthesis of CdS nanocrystals in mixed solvents. Cryst Growth Des 5:1801–1806

    Article  CAS  Google Scholar 

  • Colvin VL, Schlamp MC, Alivisatos AP (1994) Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370:354–357

    Article  CAS  Google Scholar 

  • Cozzoli PD, Manna L, Curri ML, Kudera S, Giannini C, Striccoli M, Agostiano A (2005) Shape and phase control of colloidal ZnSe nanocrystals. Chem Mater 17:1296–1306

    Article  CAS  Google Scholar 

  • Cullity BD (1956) Elements of X-ray diffraction. Addison-Wesley publishing company, USA

    Google Scholar 

  • Cullity BD, Stock SR (2001) Elements of X-ray diffraction, 3rd edn. Prentice Hall, USA

    Google Scholar 

  • Deligoz E, Colakoglu K, Ciftci Y (2006) Elastic, electronic, and lattice dynamical properties of CdS, CdSe, and CdTe. Phys B 373:124–130

    Article  CAS  Google Scholar 

  • Duan X, Niu C, Sahi V, Chen J, Parce JW, Empedocles S, Goldman JL (2003) High-performance thin-film transistors using semiconductor nanowires and nanoribbons. Nature 425:274–278

    Article  CAS  Google Scholar 

  • Ekimov AI, Hache F, Klein MCS, Ricard D, Flytzanis C, Kudryavtsev IA, Yazeva TV, Rodina AV, Efros AL (1993) Absorption and intensity-dependent photoluminescence measurements on CdSe quantum dots: assignment of the first electronic transitions. J Opt Soc Am B 10:100–107

    Article  CAS  Google Scholar 

  • Horleya PP, Gorleya VV, Gorleya PM, Hernandezb JG, Vorobiev YV (2005) On correlation of CdS and CdSe valence band parameters. Thin Solid Films 480:373–376

    Article  Google Scholar 

  • Hu J, Wang LW, Li LS, Yang W, Alivisatos AP (2002) Semiempirical pseudopotential calculation of electronic states of CdSe quantum rods. J Phys Chem B 106:2447–2452

    Article  CAS  Google Scholar 

  • Huynh WU, Dittmer JJ, Alivisatos AP (2002) Hybrid nanorod-polymer solar cells. Science 295:2425–2427

    Article  CAS  Google Scholar 

  • Jdira L, Overgaag K, Gerritsen J, Vanmaekelbergh D, Liljeroth P, Speller S (2008) Scanning tunnelling spectroscopy on arrays of CdSe quantum dots: response of wave functions to local electric fields. Nano Lett 8:4014–4019

    Article  CAS  Google Scholar 

  • Jeon JB, Sirenko YM, Kim KW, Littlejohn MA, Stroscio MA (1996) Valence band parameters of wurtzite materials. Solid State Commun 99:423–426

    Article  CAS  Google Scholar 

  • Katz D, Wizansky T, Millo O, Rothenberg E, Mokari T, Banin U (2002) Size-dependent tunneling and optical spectroscopy of CdSe quantum rods. Phys Rev Lett 89:086801(1–4)

    Google Scholar 

  • Khan AH, Ji Q, Ariga K, Thupakula U, Acharya S (2011) Size controlled ultranarrow PbS nanorods: spectroscopy and robust stability. J Mater Chem 21:5671–5676

    Article  CAS  Google Scholar 

  • Kumar S, Nann T (2006) Shape control of II–VI semiconductor nanomaterials. Small 2:316–329

    Article  CAS  Google Scholar 

  • Li XZ, Xia JB (2002) Electronic structure and optical properties of quantum rods with wurtzite structure. Phys Rev B 66:115316(1–6)

  • Li Q, Guo B, Yu J, Ran J, Zhang B, Yan H, Gong JR (2011) Highly efficient visible light driven photocatalytic hydrogen production of CdS cluster decorated graphene nanosheets. J Am Chem Soc 133:10878–10884

    Article  CAS  Google Scholar 

  • Malko AV, Mikhailovsky AA, Petruska MA, Hollingsworth JA, Htoon H, Bawendi MG, Klimov VI (2002) From amplified spontaneous emission to microring lasing using nanocrystal quantum dot solids. Appl Phys Lett 81:1303–1305

    Article  CAS  Google Scholar 

  • Mang P, Gao L (2003) Synthesis and characterization of CdS nanorods via hydrothermal microemulsion. Langmuir 19:208–210

    Article  Google Scholar 

  • Milliron DJ, Hughes SM, Cui Y, Manna L, Li JB, Wang LW, Alivisatos AP (2004) Colloidal nanocrystal heterostructures with linear and branched topology. Nature 430:190–195

    Article  CAS  Google Scholar 

  • Norris DJ, Bawendi MG (1996) Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots. Phys Rev B 53:16338–16346

    Article  CAS  Google Scholar 

  • Panda AB, Acharya S, Efrima S (2005) Ultranarrow ZnSe nanorods and nanowires: structure, spectroscopy, and one dimensional properties. Adv Mater 17:2471–2474

    Article  CAS  Google Scholar 

  • Panda AB, Acharya S, Efrima S, Golan Y (2007) Synthesis, assembly, and optical properties of shape and phase controlled ZnSe nanostructures. Langmuir 23:765–770

    Article  CAS  Google Scholar 

  • Park J, Lee KH, Galloway JF, Searson PC (2008) Synthesis of cadmium selenide quantum dots from a non-coordinating solvent: growth kinetics and particle size distribution. J Phys Chem C 112:17849–17854

    Article  CAS  Google Scholar 

  • Patla I, Acharya S, Zeiri L, Israelachvili J, Efrima S, Golan Y (2007) Synthesis, two-dimensional assembly, and surface pressure-induced coalescence of ultranarrow PbS nanowires. Nano Lett 7:1459–1462

    Article  CAS  Google Scholar 

  • Peng ZA, Peng XG (2001a) Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J Am Chem Soc 123:183–184

    Article  CAS  Google Scholar 

  • Peng ZA, Peng X (2001b) Mechanisms of the shape evolution of CdSe nanocrystals. J Am Chem Soc 123:1389–1395

    Article  CAS  Google Scholar 

  • Peng ZA, Peng X (2002) Nearly monodisperse and shape controlled CdSe nanocrystals via alternative routes: nucleation and growth. J Am Chem Soc 124:3343–3353

    Article  CAS  Google Scholar 

  • Peng X, Manna L, Yang W, Wickham J, Scher E, Kadavanich A, Alivisatos AP (2000) Shape control of CdSe nanocrystals. Nature 404:59–61

    Article  CAS  Google Scholar 

  • Povolotskyi M, Carlo AD, Birner S (2004) Electronic and optical properties of [N11] grown nanostructures. Phys Stat Sol C 1:1511–1521

    Article  CAS  Google Scholar 

  • Pradhan N, Efrima S (2004) Supercrystals of uniform nanorods and nanowires, and the nanorod to nanowire oriented transition. J Phys Chem B 108:11964–11970

    Article  CAS  Google Scholar 

  • Pradhan N, Acharya S, Ariga K, Karan NS, Sarma DD, Wada Y, Efrima S, Golan Y (2010) Chemically programmed ultrahigh density two dimensional semiconductor superlattice array. J Am Chem Soc 132:1212–1213

    Article  CAS  Google Scholar 

  • Ran J, Yu J, Jaroniecetc M (2011) Ni(OH)2 modified CdS nanorods for highly efficient visible light driven photo catalytic H2 generation. Green Chem 13:2708–2713

    Article  CAS  Google Scholar 

  • Sadan H, Kaplan WD (2006) Au–Sapphire (0001) solid–solid interfacial energy. J Mater Sci 41:5099–5107

    Article  CAS  Google Scholar 

  • Trellakis A, Zibold T, Andlauer T, Birner S, Smith RK, Morschl R, Vogl P (2006) The 3D nanometer device project nextnano: concepts, methods, results. J Comput Electron 5:285–289

    Article  Google Scholar 

  • Wang J, Gudiksen MS, Duan X, Cui Y, Lieber CM (2001) Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science 293:1455–1457

    Article  CAS  Google Scholar 

  • Xia JB, Li J (1999) Electronic structure of quantum spheres with wurtzite structure. Phys Rev B 60:11540–11544

    Article  CAS  Google Scholar 

  • Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H (2003) One dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15:353–389

    Article  CAS  Google Scholar 

  • Yong KT, Sahoo Y, Swihart MT, Prasad PN (2007) Shape control of CdS nanocrystals in one-pot synthesis. J Phys Chem C 111:2447–2458

    Article  CAS  Google Scholar 

  • Yu J, Zhang J, Jaroniec M (2010) Preparation and enhanced visible-light photocatalytic H2-production activity of CdS quantum dots sensitized Zn1-xCdxS solid solution. Green Chem 12:1611–1614

    Article  CAS  Google Scholar 

  • Zeiri L, Patla I, Acharya S, Golan Y, Efrima S (2007) Raman spectroscopy of ultranarrow CdS nanostructures. J Phys Chem C 111:11843–11848

    Article  CAS  Google Scholar 

  • Zhu G, Zhang S, Xu Z, Ma J, Shen (2011) Ultrathin ZnS single crystal nanowires: Controlled synthesis and room-temperature ferromagnetism properties. J Am Chem Soc 133:15605–15612

    Article  CAS  Google Scholar 

  • Zhuang Z, Lu X, Peng Q, Li Y (2010) Direct synthesis of water-soluble ultrathin CdS nanorods and reversible tuning of the solubility by alkalinity. J Am Chem Soc 132:1819–1821

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support under Grant #SR/S5/NM-47/2005 and Grant #SR/NM/NS-49/2009 from DST, India are gratefully acknowledged. The authors are thankful to nextnano 3 simulator, and Professor Stefan Birner for useful scientific advice with the simulation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somobrata Acharya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thupakula, U., Jena, A., Khan, A.H. et al. Synthesis, structure and electronic properties of ultranarrow CdS nanorods. J Nanopart Res 14, 701 (2012). https://doi.org/10.1007/s11051-011-0701-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-011-0701-8

Keywords

Navigation