Skip to main content
Log in

Determination of P3HT Trap Site Energies by Thermally Stimulated Current

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The thermal, electrical and morphological characterization of poly(3-hexylthiophene-2,5diyl) (P3HT) is presented and discussed. Thermal analyses revealed high glass transition, melting and degradation temperatures, indicating high stability of the polymer to annealings in the range 25–200°C. Electrical measurements were performed in spin-coated devices constructed using indium tin oxide (ITO) and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) in the sandwich structure ITO/PEDOT:PSS/P3HT/Al. The devices were thermally treated at 25°C, 100°C, 150°C, and 200°C prior to the measurements. Characteristic curves of current density versus voltage showed that the injection of charge carriers is governed by tunneling at high electric fields. Hole mobility was estimated by impedance spectroscopy, showing a maximum value of 8.6 × 10−5 cm2/Vs for annealed films at 150°C. A thermally stimulated current technique was used to analyze the trap density in the P3HT and its respective energies for all devices, presenting the lowest trap density for annealed films at 150°C. Morphological features observed by atomic force microscopy showed that the 150°C thermally treated film presents the best interface condition of the four investigated annealing temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Cnops, B.P. Rand, D. Cheyns, B. Verreet, M.A. Empl, and P. Heremans, Nat. Commun. 5, 3406 (2013).

    Google Scholar 

  2. A. Roigé, M.C. Quiles, J.O. Osso, M.I. Alonso, L.F. Vega, and M. Garriga, Synth. Met. 161, 2570 (2012).

    Article  Google Scholar 

  3. K. Ali, U. Pietsch, and S. Grigorian, J. Appl. Crystallogr. 46, 908 (2013).

    Article  Google Scholar 

  4. W. Aloui, A. Ltaief, and A. Bouazizi, Superlattices Microstruct. 64, 581 (2013).

    Article  Google Scholar 

  5. W. Cao, Y. Zheng, Z. Li, E. Wrzesniewski, W.T. Hammond, and J. Xue, Org. Electron. 13, 2221 (2012).

    Article  Google Scholar 

  6. M. Manceau, D. Angmo, M. Jorgensen, and F.C. Krebs, Org. Electron. 12, 566 (2011).

    Article  Google Scholar 

  7. Y.J. Cho, J.Y. Lee, and S.R. Forrest, Appl. Phys. Lett. 103, 193301 (2013).

    Article  Google Scholar 

  8. Y.C. Huang, H.C. Chia, C.M. Chuang, C.S. Tsao, C.Y. Chen, and W.F. Su, Sol. Energy Mater. Sol. Cells 114, 24 (2013).

    Article  Google Scholar 

  9. J.Y. Oh, M. Shin, T.I.I. Lee, W.S. Jang, Y.J. Lee, C.S. Kim, J.W. Kang, J.M. Myoung, H.K. Baik, and U. Jeong, Macromolecules 46, 3534 (2013).

    Article  Google Scholar 

  10. M.A. Rahman, A. Rahim, M. Maniruzzaman, K. Yang, C. Lee, H. Nam, H. Soh, and J. Lee, Sol. Energy Mater. Sol. Cells 95, 3573 (2011).

    Article  Google Scholar 

  11. I. Etxebarria, J.G. Tait, R. Gehlhaar, R. Pacios, and D. Cheyns, Org. Electron. 14, 430 (2013).

    Article  Google Scholar 

  12. O. Oklobia and T.S. Shafai, Solid-State Electron. 87, 64 (2013).

    Article  Google Scholar 

  13. H. Hoppe and N.S. Sariciftci, J. Mater. Res. 19, 1924 (2004).

    Article  Google Scholar 

  14. G. Paternó, F. Cacialli, and V.G. Sakai, Chem. Phys. 427, 142 (2013).

    Article  Google Scholar 

  15. W. Ma, C. Yang, X. Gong, K. Lee, and A.J. Heeger, Adv. Funct. Mater. 15, 1617 (2005).

    Article  Google Scholar 

  16. X. Yang, J. Loos, S.C. Veenstra, W.J.H. Verhees, M.M. Wienk, J.M. Kroon, M.A.J. Michels, and R.A.J. Janssen, Nano Lett. 5, 579 (2005).

    Article  Google Scholar 

  17. O. Oklobia and T.S. Shafai, Sol. Energy Mater. Sol. Cells 117, 1 (2013).

    Article  Google Scholar 

  18. J.Y. Kim, S. Noh, J. Kwak, and C. Lee, J. Nanosci. Nanotechnol. 13, 3360 (2013).

    Article  Google Scholar 

  19. S. Rathi, G. Chauhan, S.K. Gupta, R. Srivastava, and A. Singh, J. Electron. Mater. 46, 1235 (2017).

    Article  Google Scholar 

  20. Z. Chiguvare, J. Parisi, and V. Dyakonov, Z. Naturforsch. 62a, 609 (2007).

    Google Scholar 

  21. D. Natali and M. Sampietro, J. Appl. Phys. 92, 5310 (2002).

    Article  Google Scholar 

  22. P.W.M. Blom, M.J.M. Jong, and J.J.M. Vleggaar, Appl. Phys. Lett. 68, 3308 (1996).

    Article  Google Scholar 

  23. P. Anjaneyulu, C.S.S. Sangeeth, and R. Menon, J. Appl. Phys. 107, 093716 (2010).

    Article  Google Scholar 

  24. E. Barsoukov and J.R. MacDonald, Impedance Spectroscopy: Theory, Experimental and Applications (New Jersey: Wiley, 2005).

    Book  Google Scholar 

  25. H.C.F. Martens, J.N. Huiberts, and P.W.M. Blom, Appl. Phys. Lett. 77, 1852 (2000).

    Article  Google Scholar 

  26. H.C. Martens and H.B. Brom, Phys. Rev. B 60, R8489 (1999).

    Article  Google Scholar 

  27. P. Stallinga, A.R.V. Benvenho, E.C.P. Smits, S.G.J. Mathijssen, M. Cölle, H.L. Gomes, and D.M. Leeuw, Org. Electron. 9, 735 (2008).

    Article  Google Scholar 

  28. J.V. Li, A.M. Nardes, Z. Liang, S.E. Shaheen, B.A. Gregg, and D.H. Levi, Org. Electron. 12, 1879 (2011).

    Article  Google Scholar 

  29. T. Okachi, T. Nagase, T. Kobayashi, and H. Naito, Thin Solid Films 517, 1331 (2008).

    Article  Google Scholar 

  30. J.M. Montero and J. Bisquert, J. Appl. Phys. 110, 043705 (2011).

    Article  Google Scholar 

  31. K.K.H. Chan, S.W. Tsang, H.K.H. Lee, F. So, and S.K. So, J. Polym. Sci. Part B Polym. Phys. 51, 649 (2013).

    Article  Google Scholar 

  32. Y.I. Lee, J.H. Youn, M.S. Ryu, J. Kim, J. Jang, and H.T. Moon, J. Appl. Phys. 108, 054506 (2010).

    Article  Google Scholar 

  33. C.M. Kang, S. Kim, Y. Hong, and C. Lee, Thin Solid Films 518, 889 (2009).

    Article  Google Scholar 

  34. M. Lada, Appl. Phys. Lett. 93, 143308 (2008).

    Article  Google Scholar 

  35. W. Aloui, A. Ltaief, and A. Bouazizi, Microelectron. Eng. 129, 96 (2014).

    Article  Google Scholar 

  36. F.A. Roghabadi, M. Kokabi, V. Ahmadi, and G. Abaeiani, Thin Solid Films 621, 19 (2017).

    Article  Google Scholar 

  37. J.G. Simmons and G.W. Taylor, Phys. Rev. B 5, 1619 (1972).

    Article  Google Scholar 

  38. P. Bräunlich, Thermally stimulated relaxation in solids (New York: Springer, 1979).

    Book  Google Scholar 

  39. N. Von Malm, R. Schmechel, and H. von Seggern, Synth. Met. 126, 87 (2002).

    Article  Google Scholar 

  40. C. Renaud and T.P. Nguyen, J. Appl. Phys. 106, 053707 (2009).

    Article  Google Scholar 

  41. M. Pranaitis, V. Janonis, A. Sakavicius, and V. Kazukauskas, Semicond. Sci. Technol. 26, 085021 (2011).

    Article  Google Scholar 

  42. J. Schafferhans, A. Baumann, A. Wagenpfahl, C. Deibel, and V. Dyakonov, Org. Electron. 11, 1693 (2010).

    Article  Google Scholar 

  43. C.Y. Yu, T.H. Jen, S.A. Chen, and A.C.S. Appl, Mater. Interfaces 5, 4086 (2013).

    Article  Google Scholar 

  44. A.L. Domanski, I. Lieberwirth, E. Sengupta, K. Landfester, H.J. Butt, R. Berger, J. Rauh, V. Dyakonov, and C. Deibel, J. Phys. Chem. C 117, 23495 (2013).

    Article  Google Scholar 

  45. R. Ramani, J. Srivastava, and A. Alam, Thermochim. Acta 499, 34 (2010).

    Article  Google Scholar 

  46. A. Rodrigues, M.C.R. Castro, A.S.F. Farinha, M. Oliveira, J.P.C. Tomé, A.V. Machado, M.M.M. Raposo, L. Hilliou, and G. Bernardo, Polym. Test. 32, 1192 (2013).

    Article  Google Scholar 

  47. J. Zhao, A. Swinnen, G.V. Assche, J. Manca, D. Vabderzande, and B.V. Mele, J. Phys. Chem. B 113, 1587 (2009).

    Article  Google Scholar 

  48. C.S. Lee and M.D. Dadmun, Polymer 55, 4 (2014).

    Article  Google Scholar 

  49. S.M. Cassemiro, C. Zanlorenzi, T.D.Z. Atvars, G. Santos, F.J. Fonseca, and L.C. Akcelrud, J. Lumin. 134, 670 (2013).

    Article  Google Scholar 

  50. A.R. Adhikari, M. Huang, H. Bakhru, M. Chipara, C.Y. Ryu, and P.M. Ajayan, Nanotechnology 17, 5947 (2006).

    Article  Google Scholar 

  51. G.F. Malgas, C.J. Arendse, S. Mavundla, and F.R. Cummings, J. Mater. Sci. 43, 5599 (2008).

    Article  Google Scholar 

  52. M. Koehler and I.A. Hummelgen, Appl. Phys. Lett. 70, 3254 (1997).

    Article  Google Scholar 

  53. H. K. Henisch, Semiconductor Contacts: An Approach to Ideas and Models, International Series of Monographs on Physics, 70 (1984) Clarendon Press, Oxford.

  54. Z. Chiguvare, J. Parisi, and V. Dyakonov, J. Appl. Phys. 94, 2440 (2003).

    Article  Google Scholar 

  55. S.M. Sze, Physics of Semiconductor Devices (New York: Wiley, 1981).

    Google Scholar 

  56. G. Garcia-Belmonte, A. Munar, E.M. Barea, J. Bisquert, I. Ugarte, and R. Pacios, Adv. Organic Electron. 9, 847 (2008).

    Article  Google Scholar 

  57. A. Guerrero, H. Heidari, T.S. Ripolles, A. Kovalenko, M. Pfannmöller, S. Bals, L.D. Kauffmann, J. Bisquert, and G. Garcia-Belmonte, Adv. Energy Mater. 5, 1401997 (2015).

    Article  Google Scholar 

  58. J. Plans, M. Zielinski, and M. Kryszewski, Phys. Rev. B 23, 6557 (1981).

    Article  Google Scholar 

  59. P. Stallinga, Electrical Characterization of Organic Electronic Materials and Devices, 1st ed. (London: Wiley, 2009).

    Book  Google Scholar 

  60. Z. Fang, L. Shan, T.E. Schlesinger, and A.G. Milnes, J. Mater. Sci. Eng. B 5, 397 (1990).

    Article  Google Scholar 

  61. J. Schafferhans, A. Baumann, C. Deibel, and V. Dyakonov, Appl. Phys. Lett. 93093303 (2008).

  62. T.A.T. Cowell and J. Woods, Br. J. Appl. Phys. 18, 1045 (1967).

    Article  Google Scholar 

  63. M.A. Baldo and S.R. Forrest, Phys. Rev. B 64, 08520 (2001).

    Article  Google Scholar 

  64. A.J. Campbell, D.D.C. Bradley, and D.G. Lidzey, J. Appl. Phys. 82, 6326 (1997).

    Article  Google Scholar 

  65. J. de F. P. Souza, E.L. Kowalski, L.C. Akcelrud, and J.P.M. Serbena, J. Solid State Electr. 18, 3497 (2014).

    Article  Google Scholar 

  66. K. Kawano and C. Adachi, Adv. Funct. Mater. 19, 3934 (2009).

    Article  Google Scholar 

  67. A. Foertig, J. Rauh, V. Dyakonov, and C. Deibel, Phys. Rev. B 86, 115302 (2012).

    Article  Google Scholar 

  68. P. Yu, A. Migan-Dubois, J. Alvarez, A. Darga, V. Vissac, D. Mencaraglia, Y. Zhou, and M. Krueger, J. Non-Cryst. Solids 358, 2537 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. M. Serbena.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souza, J.F.P., Serbena, J.P.M., Kowalski, E.L. et al. Determination of P3HT Trap Site Energies by Thermally Stimulated Current. J. Electron. Mater. 47, 1611–1619 (2018). https://doi.org/10.1007/s11664-017-5965-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5965-z

Keywords

Navigation