Skip to main content
Log in

Magnetoresistance in electrochemically deposited polybithiophene thin films

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Magnetoresistance phenomenon on organic semiconductors has been studied mostly on spin-coated or vacuum thermal sublimated materials. In this work, electrochemistry is used as organic deposition technique. We report electrical measurements with an applied magnetic field on devices constructed in the sandwich structure indium tin oxide (ITO)/poly(bithiophene) (PBT)/aluminum (Al). The PBT polymer was electrochemically deposited on ITO. Hole mobility of 2.6 × 10−5 cm2/Vs was measured by impedance spectroscopy measurements, and thermally stimulated current measurements indicated two trapping states with activation energies around E 1–3 = 0.49 eV and E 4 = 0.51 eV. The interface ITO/PBT was characterized as a tunneling junction with ~0.9 eV energy barrier for hole injection from ITO. The highest magnetoresistance, ~0.6 %, was observed for a 273-nm PBT thickness, independent on direction between current and magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Forrest SR, Thompson ME (2007) Chem Rev 107:923–925

    Article  CAS  Google Scholar 

  2. Kalinowski J, Szmytkowski J, Stampor W (2003) Chem Phys Lett 378:380–387

    Article  CAS  Google Scholar 

  3. Francis TL, Mermer O, Veeraraghavan G, Wohlgenannt M (2004) New J Phys 6:185–192

    Article  Google Scholar 

  4. Tolstov IV, Belov AV, Kaplunov MG, YakuschenkoI K, Spitsina NG, Triebel MM, Frankevich EL (2005) J Lumin 112:368–371

    Article  CAS  Google Scholar 

  5. Prigodin VN, Bergeson JD, Lincoln DM, Epstein AJ (2006) Synth Met 156:757–761

    Article  CAS  Google Scholar 

  6. Bobbert PA, Nguyen TD, Oost FWA, Koopmans B, Wohlgenannt M (2007) Phys Rev Lett 99:216801-1–216801-4

    Article  Google Scholar 

  7. Desai P, Shakya P, Kreouzis T, Gillin WP, Morley NA, Gibbs MRJ (2007) Phys Rev B 75:094423-1–094423-5

    Article  Google Scholar 

  8. Hu B, Wu Y (2007) Nat Mater 6:985–991

    Article  CAS  Google Scholar 

  9. Bloom FL, Wagemans W, Kemerink M, Koopmans B (2008) Appl Phys Lett 93:263302-1–263302-3

    Article  Google Scholar 

  10. Bagnich SA, Niedermeier U, Melzer C, Sarfert W, Seggern H (2009) J Appl Phys 105:123706-1–123706-6

    Article  Google Scholar 

  11. Ding BF, Yao Y, Sun ZY, Wu CQ, Gao XD, Wang ZJ, Ding XM, Choy WCH, Hou XY (2010) Appl Phys Lett 97:163302-1–163302-3

    Google Scholar 

  12. Reichert T, Saragi TPI (2011) Appl Phys Lett 98:063307-1–063307-3

    Article  Google Scholar 

  13. Kersten SP, Schellekens AJ, Koopmans B, Bobbert PA (2011) Phys Rev Lett 106:197402-1–197402-4

    Article  Google Scholar 

  14. Gómez JA, Castro FA, Nüesch F, Zuppiroli L, Graeff CFO (2012) Appl Phys A 108:727–731

    Article  Google Scholar 

  15. Meruvia MS, Freire JA, Hummelgen IA, Gruber J, Graeff CFO (2007) Org Electron 8:695–701

    Article  CAS  Google Scholar 

  16. Janssen P, Cox M, Wouters SHW, Kemerink M, Wienk MM, Koopmans B (2013) Nat Commun 4:2286–2293

    Article  CAS  Google Scholar 

  17. Gautam BR, Nguyen TD, Ehrenfreund E, Vardeny ZV (2013) J Appl Phys 113:143102-1–143102-7

    Article  Google Scholar 

  18. Foroughi J, Spinks GM, Ghorbani SR, Kozlov ME, Safaei F, Peleckis G, Wallace GG, Baughman RH (2012) Nanoscale 4:940–945

    Article  CAS  Google Scholar 

  19. Juttner K (2007) Technical Scale of Electrochemistry In: Macdonald DD, SchmukiP (eds) Vol. 5 Electrochemical Engineering In: Bard AJ, Stratmann M (eds) Encyclopedia of Electrochemistry, Wiley-VCH, Weinheim

  20. Leguenza EL, Patyk RL, Mello RMQ, Micaroni L, Koehler M, Hummelgen IA (2007) J Solid State Electrochem 11:577–580

    Article  CAS  Google Scholar 

  21. Tavares ACB, Serbena JPM, Hummelgen IA, Meruvia MS (2014) Org Electron 15:738–742

    Article  CAS  Google Scholar 

  22. Koehler M, Hummelgen IA (1997) Appl Phys Lett 70:3254–3256

    Article  CAS  Google Scholar 

  23. Barsoukov E, Macdonald JR (2005) Impedance spectroscopy - theory, experiment, and applications. Wiley-Interscience, New Jersey

    Book  Google Scholar 

  24. Martens HCF, Brom HB, Blom PWM (1999) Phys Rev B 60:R8489–R8492

    Article  CAS  Google Scholar 

  25. Martens HCF, Huiberts JN, Blom PWM (2000) Appl Phys Lett 77:1852–1854

    Article  CAS  Google Scholar 

  26. Harima Y, Kunugi Y, Yamashita K, Shiotani M (2000) Chem Phys Lett 317:310–314

    Article  CAS  Google Scholar 

  27. Kim Y, Cook S, Tuladhar SM, Choulis SA, Nelson J, Durrant JR, Bradley DDC, Giles M, McCulloch I, Ha C, Ree M (2006) Nat Mater 5:197–203

    Article  CAS  Google Scholar 

  28. Chellappan V, Ng GM, Tan MJ, Goh WP, Zhu F (2009) Appl Phys Lett 95:263305-1–263305-3

    Article  Google Scholar 

  29. Kawano K, Adachi C (2009) Adv Funct Mater 19:3934–3940

    Article  CAS  Google Scholar 

  30. Alagiriswamy AA, Narayan KS (2001) Synth Met 116:297–299

    Article  CAS  Google Scholar 

  31. Nikitenko VR, Heil H, Seggern H (2003) J Appl Phys 94:2480–2485

    Article  CAS  Google Scholar 

  32. Pranaitis M, Janonis V, Sakavicius A, Kazukauskas V (2011) Semicond Sci Technol 26:085021-1–085021-5

    Article  Google Scholar 

  33. Schafferhans J, Baumann A, Deibel C, Dyakonov V (2008) Appl Phys Lett 93:093303-1–093303-3

    Article  Google Scholar 

  34. Simmons JG, Taylor GW (1972) Phys Rev B 5:1619–1629

    Article  Google Scholar 

  35. Bässler H (1993) Phys Status Solidi B 175:15–56

    Article  Google Scholar 

  36. Fang Z, Shan L, Schlesinger TE, Milnes AG (1990) Mater Sci Eng B 5:397–408

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Universidade Federal do Paraná (UFPR), and Institutos Lactec for financial and technical support, and Prof. Ivo A. Hummelgen for fruitful discussions and laboratory facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. M. Serbena.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souza, J.d.F.P., Kowalski, E.L., Akcelrud, L.C. et al. Magnetoresistance in electrochemically deposited polybithiophene thin films. J Solid State Electrochem 18, 3491–3497 (2014). https://doi.org/10.1007/s10008-014-2576-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2576-y

Keywords

Navigation