Skip to main content
Log in

Analysis of Blockade in Charge Transport Across Polymeric Heterojunctions as a Function of Thermal Annealing: A Different Perspective

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A blend of poly(3-hexylthiophene-2,5diyl) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) is popularly used as an active medium in polymeric solar devices. According to the most recent understanding, the blend is a three-phase system contrary to its earlier understanding of two-phase bicontinuous network. We have synthesized a P3HT–PCBM based layered heterostructure system by spin coating and thermal vacuum evaporations. Current density (J) was measured as a function of applied electric field (E) across the system bound between two metal electrodes. JE relations were analyzed into the backdrop of space charge limited current model and Schottky model. The later was used to predict dc-dielectric constants from the linear slopes of ln (J) versus E 1/2. The curves were not monotonously linear, but observe a knee-bend separating into two linear segments for each curve. Thermal annealing from 40°C to 80°C was used as an activation tool for driving changes in the internal morphology via inter-diffusion of polymers and current measurements were performed at room temperature after each annealing. At the last stage of annealing the two linear slopes were highly distinct. The presence of sharp knee-bend results in approximately 20 times jump in dielectric constant as a function of electric field. Such high jumps in dielectric constant illustrate the potential for switching applications and charge storage. The high dielectric constants can be understood in terms of space charge polarization due to isolated domains which hindrance to charge transport. The high dielectric constants were confirmed by another experiment of capacitance measurements of a different set of similar samples. A study of thermal evolution of internal morphology was also carried out using x-ray diffraction and scanning electron microscopy techniques to correlate the morphological changes with the transport properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.R. Forrest, Nature 428, 911 (2004).

    Article  Google Scholar 

  2. G. Li, R. Zhu and Y. Yang, Nat. Photonics 6, 153 (2012).

    Article  Google Scholar 

  3. K. Maex, M.R. Baklanov, D. Shamiryan, F. Lacopi, S.H. Brongersma, and Z.S. Yanovitskaya, J. Appl. Phys. 93, 8793 (2003).

    Article  Google Scholar 

  4. J.Y. Kim, J. Lee, W.H. Lee, I.N. Kholmanov, Y. Hao, H. Chou, D. Akinwande, R.S. Ruoff, J.W. Suk, and T.Y. Kim, ACS Nano 8, 269 (2014).

    Article  Google Scholar 

  5. Q.M. Zhang, H. Li, M. Poh, F. Xia, Z.-Y. Cheng, H. Xu, and C. Huang, Nature 419, 284 (2002).

    Article  Google Scholar 

  6. E.J.G. Santos and E. Kaxiras, Nano Lett. 13, 898 (2013).

    Article  Google Scholar 

  7. M.T. Dang, L. Hirsch, and G. Wantz, Adv. Mater. 23, 3597 (2011).

    Article  Google Scholar 

  8. X. Yang, J. Loos, S.C. Veenstra, W.J.H. Verhees, M.M. Wienk, J.M. Karoon, M.A.J. Michels, and R.A.J. Janssen, Nano Lett. 4, 579 (2005).

    Article  Google Scholar 

  9. W. Yin and M. Dadmun, ACS Nano 5, 4756 (2011).

    Article  Google Scholar 

  10. S. Mukherjee, C.M. Proctor, G.C. Bazan, T.Q. Nguyen, and H. Ade, Adv. Energy Mater. 5, 1500877 (2015).

    Article  Google Scholar 

  11. B.A. Collins, E. Gann, L. Guinard, X. He, C.R. McNeill, and H. Ade, J. Phys. Chem. Lett. 1, 3160 (2010).

    Article  Google Scholar 

  12. B.A. Collins, J.R. Tumbleston, and H. Ade, J. Phys. Chem. Lett. 2, 3135 (2011).

    Article  Google Scholar 

  13. T. Agostinelli, S. Lilliu, J.G. Labram, M.C. Quiles, M. Hampton, E. Pires, J. Rawle, O. Bikondoa, D.D.C. Bradley, T.D. Anthopoulos, J. Nelson, and J.E. Macdonald, Adv. Funct. Mater. 21, 1701 (2011).

    Article  Google Scholar 

  14. H. Kim, W.W. So, and S.J. Moon, Sol. Energy Mater. Sol. Cells 91, 581 (2007).

    Article  Google Scholar 

  15. Y.-C. Huang, S.-Y. Chuang, M.-C. Wu, H.-L. Chen, C.-W. Chen, and W.-F. Su, J. Appl. Phys. 106, 034506 (2009).

    Article  Google Scholar 

  16. A.J. Moule, S. Allarad, N.M. Kronenberg, A. Tsami, U. Scherf, and K. Meerholz, J. Phys. Chem. C 112, 12583 (2008).

    Article  Google Scholar 

  17. A. Singh and M. Mukherjee, Phys. Rev. E 70, 051608 (2004).

    Article  Google Scholar 

  18. A. Solanki, B. Wu, T. Salim, Y.M. Lam, and T.C. Sum, Phys. Chem. Chem. Phys. 17, 26111 (2015).

    Article  Google Scholar 

  19. W. Wang, S. Guo, E. Herzing, K. Sarkar, M. Schindler, D. Magerl, M. Philipp, J. Perlich, and P. Muller-Buschbaum, J. Mater. Chem. A 4, 3743 (2016).

    Article  Google Scholar 

  20. J.A. Amonoo, A. Li, G.E. Purdum, M.E. Sykes, B. Huang, E.F. Palermo, A.J. McNeil, M. Shtein, Y.-L. Loo, and P.F. Green, J. Mater. Chem. A 3, 20174 (2015).

    Article  Google Scholar 

  21. J.A. Reinspach, C. Tassone, Z. Bao, Y. Diao, B.J. Worfolk, G. Giri, T. Sachse, M. Presselt, K. England, M.F. Toney, Y. Zhou, S. Mannsfeld, and A.C.S. Appl, Mater. Interfaces 8, 1742 (2016).

    Article  Google Scholar 

  22. L. Lu, T. Zheng, Q. Wu, A.M. Schneider, D. Zhao, and L. Yu, Chem. Rev. 115, 12666 (2015).

    Article  Google Scholar 

  23. M. Mukherjee and A. Singh, Phys. Stat. Sol. (b) 244, 928 (2007).

    Article  Google Scholar 

  24. P. Peumans, A. Yakimov, and S.R. Forrest, J. Appl. Phys. 93, 3693 (2003).

    Article  Google Scholar 

  25. B.C. Thompson and J.M.J. Frechet, Angew. Chem. Int. Ed. 47, 58 (2008).

    Article  Google Scholar 

  26. C.J. Brabec, Sol. Energy Mater. Sol. Cells 83, 273 (2004).

    Article  Google Scholar 

  27. N. Gupta, G.F. Alapatt, R. Podila, R. Singh, and K.F. Poole, Int. J. Photoenergy 2009, 154059 (2009).

    Article  Google Scholar 

  28. X. Yang, J. Loos, S.C. Veenstra, W.J.H. Verhees, M.M. Wienk, J.M. Kroon, M.A.J. Michelsand, and R.A.J. Janssen, Nano Lett. 5, 579 (2005).

    Article  Google Scholar 

  29. J. Guo, H. Ohkita, H. Benten, and S. Ito, J. Am. Chem. Soc. 132, 6154 (2010).

    Article  Google Scholar 

  30. M. Jorgensen, K. Norman, and F.C. Krebs, Solar Energy Mater. Solar Cell 90, 686 (2008).

    Article  Google Scholar 

  31. K. Norrman, M.V. Madsen, S.A. Gevorgyan, and F.C. Krebs, J. Am. Chem. Soc. 132, 16883 (2010).

    Article  Google Scholar 

  32. S.M. Sze, Physics of Semiconductor Devices (New York: Wiley-Interscience, 1969), pp. 224–237.

    Google Scholar 

  33. P. Gonon, A. Deneuville, F. Fontaine, and E. Gheeraert, J. Appl. Phys. 78, 6633 (1995).

    Article  Google Scholar 

  34. R.H. Fowler and L. Nordheim, Royal Soc. 2nd Proc. 119A, 173 (1928).

  35. O. Mitrofanov and M. Manfra, J. Appl. Phys. 95, 6414 (2004).

    Article  Google Scholar 

  36. M.P. Houng, Y.H. Wang, and W.J. Chang, J. Appl. Phys. 86, 1488 (1999).

    Article  Google Scholar 

  37. A.J. Campbell, D.D.C. Bradley, and D.G. Lidzey, J. Appl. Phys. 82, 6326 (1997).

    Article  Google Scholar 

  38. S.C. Jain, A.K. Kapoor, W. Geens, J. Poortmans, R. Mertens, and M. Willander, J. Appl. Phys. 92, 3752 (2002).

    Article  Google Scholar 

  39. S.A. Rutledge and A.S. Helmy, J. Appl. Phys. 114, 133708 (2013).

    Article  Google Scholar 

  40. V. Singh, S. Arora, P.K. Bhatnagar, M. Arora, and R.P. Tandon, J. Polym. Res. 19, 9899 (2012).

    Article  Google Scholar 

  41. K. Efimenko, V. Rybka, V. Svorcik, and V. Hnatowicz, Appl. Phys. A 63, 479 (1999).

    Article  Google Scholar 

  42. M. Knipper, J. Parisi, K. Coakley, and C. Waldaul, Z. Naturforsch 62A, 490 (2007).

    Google Scholar 

  43. M. Mukherjee and A. Singh, Phys. Stat. Sol. (b) 244, 928 (2007).

    Article  Google Scholar 

  44. H.A. Pohl and M. Pollak, J. Chem. Phys. 66, 4031 (1977).

    Article  Google Scholar 

  45. M. Pollak and H.A. Pohl, J. Chem. Phys. 63, 2980 (1975).

    Article  Google Scholar 

  46. J.Y. Kim and C.D. Frisbie, J. Phys. Chem. C 112, 17726 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

The research was funded by Department of Science and Technology (DST)—Rajasthan under the sanctioned project P7 (3) S&T/R& D/2008/8001-12. We thankfully acknowledge DST-Curie grant for funding of SEM equipment. SR is thankful to DST for providing research fellowship. SR is also thankful to Sunil Kumar and Manoj Kumar in assisting XRD and capacitance measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amarjeet Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rathi, S., Chauhan, G., Gupta, S.K. et al. Analysis of Blockade in Charge Transport Across Polymeric Heterojunctions as a Function of Thermal Annealing: A Different Perspective. J. Electron. Mater. 46, 1235–1247 (2017). https://doi.org/10.1007/s11664-016-5097-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-5097-x

Keywords

Navigation