Skip to main content
Log in

Enhancement in Thermoelectric Properties of TiS2 by Sn Addition

  • Topical Collection: International Conference on Thermoelectrics 2017
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A series of Sn added TiS2 (TiS2:Sn x ; x = 0, 0.05, 0.075 and 0.1) were prepared by solid state synthesis with subsequent annealing. The Sn atoms interacted with sulfur atoms in TiS2 and formed a trace amount of misfit layer (SnS)1+m(TiS2−δ)n compound with sulfur deficiency. A significant reduction in electrical resistivity with moderate decrease in the Seebeck coefficient was observed in Sn added TiS2. Hence, a maximum power factor of 1.71 mW/m-K2 at 373 K was obtained in TiS2:Sn0.05. In addition, the thermal conductivity was decreased with Sn addition and reached a minimum value of 2.11 W/m-K at 623 K in TiS2:Sn0.075, due to the impurity phase (misfit phase) and defects (excess Ti) scattering. The zT values increased from 0.08 in pristine TiS2 to an optimized value of 0.46 K at 623 K in TiS2:Sn0.05.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.I. Kim, K.H. Lee, H.A. Mun, H.S. Kim, S.W. Hwang, J.W. Roh, D.J. Yang, W.H. Shin, X.S. Li, Y.H. Lee, G.J. Snyder, and S.W. Kim, Science 348, 109 (2015). https://doi.org/10.1126/science.aaa4166.

    Article  Google Scholar 

  2. P.C. Klipstein, A.G. Bagnall, W.Y. Liang, E.A. Marseglia, and R.H. Friend, J. Phys. C Solid State Phys. 14, 4067 (1981). https://doi.org/10.1088/0022-3719/15/1/514.

    Article  Google Scholar 

  3. J.L. Murray, S-Ti (Sulfur-Titanium), in Bin. Alloy Phase Diagrams, Second Edi, ed. by T.B. Massalski (ASM International, Materials Park, Ohio, 1990), pp. 3286–3288.

  4. P.C. Klipstein and R.H. Friend, J. Phys. C Solid State Phys. (1984). https://doi.org/10.1088/0022-3719/17/15/010.

    Google Scholar 

  5. J. Molenda, A. Stokłosa, S. Mrowec, and D. Than, Phys. Status Solidi. 119, 571 (1990). https://doi.org/10.1002/pssa.2211190220.

    Article  Google Scholar 

  6. H. Imai, Y. Shimakawa, and Y. Kubo, Phys. Rev. B. 64, 241104(R) (2001). https://doi.org/10.1103/PhysRevB.64.241104.

    Article  Google Scholar 

  7. C. Wan, Y. Wang, N. Wang, W. Norimatsu, and M. Kusunoki, J. Electron. Mater. 40, 1271 (2011). https://doi.org/10.1007/s11664-011-1565-5.

    Article  Google Scholar 

  8. H. Scherrer and S. Scherrer, Bismuth telluride, antimony telluride, and their solid solutions.CRC Handb. Thermoelectr., ed. D.M. Rowe (Boca Raton: CRC Pres, 1995),

    Google Scholar 

  9. B. Raveau, M. Beaumale, T. Barbier, and Y. Bre, J. Electron. Mater. 43, 1590 (2014). https://doi.org/10.1007/s11664-013-2802-x.

    Article  Google Scholar 

  10. M. Beaumale, T. Barbier, Y. Bréard, S. Hébert, Y. Kinemuchi, and E. Guilmeau, J. Appl. Phys. 115, 43704 (2014). https://doi.org/10.1063/1.4863141.

    Article  Google Scholar 

  11. T. Barbier, E. Guilmeau, W. Kockelmann, and A.V. Powell, J. Mater. Chem. 2, 1871 (2016). https://doi.org/10.1039/C5TC04217H.

    Google Scholar 

  12. A.A. Lakhani, S. Jandl, C. Ayache, and J.-P. Jay-Gerin, Phys. Rev. B. 28, 1978 (1983). https://doi.org/10.1103/PhysRevB.28.1978.

    Article  Google Scholar 

  13. I.M. Koyano, H. Negishi, Y. Ueda, and M. Sasaki, Phys. Status Solidi. 138, 357 (1986). https://doi.org/10.1002/pssb.2221380137.

    Article  Google Scholar 

  14. M. Beaumale, T. Barbier, Y. Breard, G. Guelou, A.V. Powell, P. Vaqueiro, and E. Guilmeau, Acta Mater. 78, 86 (2014). https://doi.org/10.1016/j.actamat.2014.06.032.

    Article  Google Scholar 

  15. E. Guilmeau, Y. Breard, and A. Maignan, Appl. Phys. Lett. 99, 2013 (2011). https://doi.org/10.1063/1.3621834.

    Article  Google Scholar 

  16. T. Barbier, O.I. Lebedev, V. Roddatis, Y. Bréard, A. Maignan, and E. Guilmeau, Dalton Trans. 44, 7887 (2015). https://doi.org/10.1039/c5dt00551e.

    Article  Google Scholar 

  17. R. Nunna, F. Gascoin, and E. Guilmeau, J. Alloys Compd. 634, 32 (2015). https://doi.org/10.1016/j.jallcom.2015.02.021.

    Article  Google Scholar 

  18. X.Y. Qin, J. Zhang, D. Li, H.Z. Dong, and L. Wang, J. Appl. Phys. 102, 73703 (2007). https://doi.org/10.1063/1.2786027.

    Article  Google Scholar 

  19. C. Wan, Y. Wang, N. Wang, and K. Koumoto, Mater. (Basel) 3, 2606 (2010). https://doi.org/10.3390/ma3042606.

    Article  Google Scholar 

  20. Y. Long, W. Zhang, X. Wang, and A. Inoue, J. Appl. Phys. 91, 5227 (2002). https://doi.org/10.1063/1.1457538.

    Article  Google Scholar 

  21. C. Wan, X. Gu, F. Dang, T. Itoh, Y. Wang, H. Sasaki, M. Kondo, K. Koga, K. Yabuki, G.J. Snyder, R. Yang, and K. Koumoto, Nat. Mater. 14, 622 (2015). https://doi.org/10.1038/nmat4251.

    Article  Google Scholar 

  22. J. Zajas and P. Heiselberg, In DCE Technical Report No. 144, 2013. http://tinyurl.com/oxyxc9o.

  23. D. Li, X.Y. Qin, and Y.J. Gu, Mater. Res. Bull. 41, 282 (2006). https://doi.org/10.1016/j.materresbull.2005.08.025.

    Article  Google Scholar 

  24. Y. Ohno, K. Kaneda, and K. Hirama, Phys. Rev. B 30, 4648 (1984). https://doi.org/10.1103/PhysRevB.30.4648.

    Article  Google Scholar 

  25. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008). https://doi.org/10.1038/nmat2090.

    Article  Google Scholar 

  26. Y.E. Putri, C. Wan, F. Dang, T. Mori, Y. Ozawa, W. Norimatsu, M. Kusunoki, and K. Koumoto, J. Electron. Mater. 43, 1870 (2014). https://doi.org/10.1007/s11664-013-2894-3.

    Article  Google Scholar 

  27. Y. Wang, Y. Ye, Y. Wang, Y.W. Shen, L. Pan, R. Tu, C. Lu, R. Huang, and K. Koumoto, J. Alloys Compd. 666, 346 (2016). https://doi.org/10.1016/j.jallcom.2016.01.114.

    Article  Google Scholar 

  28. Y. Wang, J. Wen, Z. Fan, N. Bao, R. Huang, R. Tu, and Y. Wang, AIP Adv. 5, 47126 (2015). https://doi.org/10.1063/1.4918687.

    Article  Google Scholar 

  29. D. Li, X.Y. Qin, and J. Zhang, J. Mater. Res. (2006). https://doi.org/10.1557/JMR.2006.0055.

    Google Scholar 

  30. M. Bartkowiak and G.D. Mahan, Heat and electricity transport through interfaces. Semicond Semimetals, ed. T.M. Tritt (San Diego: Academic Press, 2001), p. 249. https://doi.org/10.1016/S0080-8784(01)80136-8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuei-Hsien Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramakrishnan, A., Raman, S., Chen, LC. et al. Enhancement in Thermoelectric Properties of TiS2 by Sn Addition. J. Electron. Mater. 47, 3091–3098 (2018). https://doi.org/10.1007/s11664-017-5913-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5913-y

Keywords

Navigation