Skip to main content
Log in

Effects of Transition Metal Substitution on the Thermoelectric Properties of Metallic (BiS)1.2(TiS2)2 Misfit Layer Sulfide

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

The misfit layer compounds (BiS)1.2(TiS2)2, with a natural superlattice structures, are of substantial interest as thermoelectric materials. In this work we doped the Ti sites of (BiS)1.2(TiS2)2 with a series of transition metal (TM) elements (V, Cr, Mn, Fe, Co, Ni, Cu, and Zn), to optimize its transport properties and thermoelectric performance. X-ray diffraction confirmed all the resulting compositions were single-phase. X-ray photoelectron spectroscopy revealed the valence states of the doping elements, indicating they behave as acceptors and reduce the carrier concentration; this was also apparent from Hall measurements. However, because of the non-parabolic band structure of (BiS)1.2(TiS2)2, reduction of carrier concentration by doping with most of the TM elements did not improve the Seebeck coefficient. Exceptions were V and Cr. For these elements, the effective mass of electrons was maintained, or even enhanced, resulting in improvement of the Seebeck coefficient. Furthermore, the stacking disorder present in undoped (BiS)1.2(TiS2)2 was not observed for the TM element-doped samples, resulting in increased lattice thermal conductivity. Although the power factor of these materials was not optimized, because of the large reduction in electronic thermal conductivity upon doping, the Cr-doped sample had a higher figure of merit than the undoped material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Pei, X. Shi, A. LaLonde, H. Wang, G. Lidong Chen, and J.␣Snyder, Nature 473, 66 (2011).

    Article  Google Scholar 

  2. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  Google Scholar 

  3. G.A. Slack, CRC Handbook of Thermoelectrics, ed. D.M. Rowe (Boca Raton, FL: CRC Press, 1995), pp. 407–440.

    Google Scholar 

  4. T.M. Tritt, Annu. Rev. Mater. Res. 41, 433 (2011).

    Article  Google Scholar 

  5. H. Imai, Y. Shimakawa, and Y. Kubo, Phys. Rev. B 64, 241104 (2001).

    Article  Google Scholar 

  6. C.H. Chen, W. Fabian, F.C. Brown, K.C. Woo, B. Davies, and B. DeLong, Phys. Rev. B 21, 615 (1980).

    Article  Google Scholar 

  7. J.A. Wilson, Phys. Stat. Sol. (b) 86, 11 (1978).

    Article  Google Scholar 

  8. E. Guilmeau, Y. Breard, and A. Maignan, Appl. Phys. Lett. 99, 052107 (2011).

    Article  Google Scholar 

  9. C. Wan, Y. Wang, N. Wang, and K. Koumoto, Materials 3, 2606 (2010).

    Article  Google Scholar 

  10. C.L. Wan, Y.F. Wang, N. Wang, Y.E. Putri, W. Norimatsu, M. Kusunoki, and K. Koumoto, Modules, System and Application in Thermoelectrics, ed. D.M. Rowe (Boca Raton, FL: CRC Press, 2012), pp. 4.1–4.11.

  11. Y.E. Putri, C. Wan, Y. Wang, W. Norimatsu, M. Kusunoki, and K. Koumoto, Script. Mater. 66, 895 (2012).

    Google Scholar 

  12. L.C. Otero-Diaz, R.L. Withers, A. Gomez-Herrero, T.R. Welberry, and S. Schmid, J. Solid State Chem. 115, 274 (1995).

    Article  Google Scholar 

  13. W. Bensch and R. Schlögl, J. Solid State Chem. 107, 43 (1993).

    Article  Google Scholar 

  14. T. Kuzuya, K. Itoh, M. Ichidate, T. Wakamatsu, Y. Fukunaka, and K. Sumiyama, Electrochim. Acta 53, 213 (2007).

    Article  Google Scholar 

  15. M.C. Biesinger, C. Brown, J.R. Mycroft, R.D. Davidson, and N.S. McIntyre, Surf. Interface Anal. 36, 1550 (2004).

    Article  Google Scholar 

  16. T.X. Wang and W.W. Chen, Chem. Eng. J. 144, 146 (2008).

  17. A.P. Grosvenor, B.A. Kobe, M.C. Biesinger, and N.S. McIntyre, Surf. Interface Anal. 36, 1564 (2004).

    Article  Google Scholar 

  18. G.H. Yue, P.X. Yan, J.Z. Liu, X.Y. Fan, and R.F. Zhuo, Appl. Phys. Lett. 87, 262505 (2005).

    Article  Google Scholar 

  19. N. Chen, W. Zhang, Y. Weichao, and Y. Qian, Mater. Lett. 55, 230 (2002).

    Article  Google Scholar 

  20. W. Liu, Mater. Lett. 60, 551 (2006).

    Article  Google Scholar 

  21. J. Zhang, X.Y. Qin, H.X. Xin, D. Li, and C.J. Song, J. Electron. Mater. 40, 980 (2011).

    Article  Google Scholar 

  22. M. Nistor, F. Gherendi, N.B. Mandache, C. Hebert, J. Perrière, and W. Seiler, J. Appl. Phys. 106, 103710 (2009).

    Article  Google Scholar 

  23. H. Kozuka, K. Yamagiwa, K. Ohbayashi, and K. Koumoto, J. Mater. Chem. 22, 11003 (2012).

    Article  Google Scholar 

  24. M.D. Nielsen, E.M. Levin, C.M. Jaworski, K. Schmidt-Rohr, and J.P. Heremans, Phys. Rev. B 85, 045210 (2012).

    Article  Google Scholar 

  25. C.M. Jaworski, B. Wiendlocha, V. Jovovic, and J.P. Heremans, Energy Environ. Sci. 4, 4155 (2011).

    Article  Google Scholar 

  26. J. Zhang, X.Y. Qin, D. Li, H.X. Xin, L. Pan, and K.X. Zhang, J. Alloy. Compd. 479, 816 (2009).

    Article  Google Scholar 

  27. C. Wan, Y. Wang, W. Norimatsu, M. Kusunoki, and K. Koumoto, Appl. Phys. Lett. 100, 101913 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulia Eka Putri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Putri, Y.E., Wan, C., Dang, F. et al. Effects of Transition Metal Substitution on the Thermoelectric Properties of Metallic (BiS)1.2(TiS2)2 Misfit Layer Sulfide. J. Electron. Mater. 43, 1870–1874 (2014). https://doi.org/10.1007/s11664-013-2894-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-013-2894-3

Keywords

Navigation