Skip to main content
Log in

Tuning the Electronic Properties, Effective Mass and Carrier Mobility of MoS2 Monolayer by Strain Engineering: First-Principle Calculations

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this paper, we studied the electronic properties, effective masses, and carrier mobility of monolayer \(\hbox {MoS}_2\) using density functional theory calculations. The carrier mobility was considered by means of ab initio calculations using the Boltzmann transport equation coupled with deformation potential theory. The effects of mechanical biaxial strain on the electronic properties, effective mass, and carrier mobility of monolayer \(\hbox {MoS}_2\) were also investigated. It is demonstrated that the electronic properties, such as band structure and density of state, of monolayer \(\hbox {MoS}_2\) are very sensitive to biaxial strain, leading to a direct–indirect transition in semiconductor monolayer \(\hbox {MoS}_2\). Moreover, we found that the carrier mobility and effective mass can be enhanced significantly by biaxial strain and by lowering temperature. The electron mobility increases over 12 times with a biaxial strain of 10%, while the carrier mobility gradually decreases with increasing temperature. These results are very useful for the future nanotechnology, and they make monolayer \(\hbox {MoS}_2\) a promising candidate for application in nanoelectronic and optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.K. Geim and K.S. Novoselov, Nat. Mater. 6(3), 183 (2007).

    Article  Google Scholar 

  2. K. Novoselov, A. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, S. Dubonos, and A. Firsov, Nature 438(7065), 197 (2005).

    Article  Google Scholar 

  3. Q. Tang, Z. Zhou, and Z. Chen, WIREs Comput. Mol. Sci 5(5), 360 (2015).

    Article  Google Scholar 

  4. A.C. Neto, F. Guinea, N.M. Peres, K.S. Novoselov, and A.K. Geim, Rev. Mod. Phys. 81(1), 109 (2009).

    Article  Google Scholar 

  5. M. Chhowalla, H.S. Shin, G. Eda, L.J. Li, K.P. Loh, and H. Zhang, Nat. Chem. 5(4), 263 (2013).

    Article  Google Scholar 

  6. A.M. van der Zande, P.Y. Huang, D.A. Chenet, T.C. Berkelbach, Y. You, G.H. Lee, T.F. Heinz, D.R. Reichman, D.A. Muller, and J.C. Hone, Nat. Mater. 12(6), 554 (2013).

    Article  Google Scholar 

  7. Y. Li, D. Wu, Z. Zhou, C.R. Cabrera, and Z. Chen, J. Phys. Chem. Lett. 3(16), 2221 (2012).

    Article  Google Scholar 

  8. Y. Jing, E.O. Ortiz-Quiles, C.R. Cabrera, Z. Chen, and Z. Zhou, Electrochim. Acta 147, 392 (2014).

    Article  Google Scholar 

  9. C.V. Nguyen, N.N. Hieu, N.A. Poklonski, V.V. Ilyasov, L. Dinh, T.C. Phong, L.V. Tung, and H.V. Phuc, Phys. Rev. B (accepted for publication) (2017).

  10. K.K. Liu, W. Zhang, Y.H. Lee, Y.C. Lin, M.T. Chang, C.Y. Su, C.S. Chang, H. Li, Y. Shi, H. Zhang, et al., Nano Lett. 12(3), 1538 (2012).

    Article  Google Scholar 

  11. Y.H. Lee, X.Q. Zhang, W. Zhang, M.T. Chang, C.T. Lin, K.D. Chang, Y.C. Yu, J.T.W. Wang, C.S. Chang, L.J. Li, et al., Adv. Mater. 24(17), 2320 (2012).

    Article  Google Scholar 

  12. R.J. Smith, P.J. King, M. Lotya, C. Wirtz, U. Khan, S. De, A. O’Neill, G.S. Duesberg, J.C. Grunlan, G. Moriarty, et al., Adv. Mater. 23(34), 3944 (2011).

    Article  Google Scholar 

  13. K.F. Mak, C. Lee, J. Hone, J. Shan, and T.F. Heinz, Phys. Rev. Lett. 105(13), 136805 (2010).

    Article  Google Scholar 

  14. B. Radisavljevic, A. Radenovic, J. Brivio, I.V. Giacometti, and A. Kis, Nat. Nanotechnol. 6(3), 147 (2011)

    Article  Google Scholar 

  15. Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, ACS Nano 6(1), 74 (2011).

    Article  Google Scholar 

  16. S. Lebegue and O. Eriksson, Phys. Rev. B 79(11), 115409 (2009).

    Article  Google Scholar 

  17. E. Scalise, M. Houssa, G. Pourtois, V. Afanasev, and A. Stesmans, Nano Res. 5(1), 43 (2012).

    Article  Google Scholar 

  18. L. Dong, R.R. Namburu, T.P. ORegan, M. Dubey, and A.M. Dongare, J. Mater. Sci. 49(19), 6762 (2014).

    Article  Google Scholar 

  19. L. Wei, C. Jun-fang, H. Qinyu, and W. Teng, Physica B 405(10), 2498 (2010).

    Article  Google Scholar 

  20. W.B. Xu, B.J. Huang, P. Li, F. Li, C.w. Zhang, and P.J. Wang, Nanoscale Res. Lett. 9(1), 1 (2014).

  21. A. Kumar and P. Ahluwalia, Mater. Chem. Phys. 135(2), 755 (2012).

    Article  Google Scholar 

  22. H. Shi, H. Pan, Y.W. Zhang, and B.I. Yakobson, Phys. Rev. B 87(15), 155304 (2013).

  23. K.P. Dhakal, D.L. Duong, J. Lee, H. Nam, M. Kim, M. Kan, Y.H. Lee, and J. Kim, Nanoscale 6(21), 13028 (2014).

    Article  Google Scholar 

  24. L.P. Feng, J. Su, S. Chen, and Z.T. Liu, Mater. Chem. Phys. 148(1), 5 (2014).

    Article  Google Scholar 

  25. W. Shi, Z. Wang, Z. Li, and Y.Q. Fu, Mater. Chem. Phys. 183, 392 (2016).

    Article  Google Scholar 

  26. Y. Jing, X. Tan, Z. Zhou, and P. Shen, J. Mater. Chem. A 2(40), 16892 (2014).

    Article  Google Scholar 

  27. C. Ataca and S. Ciraci, J. Phys. Chem. C 115(27), 13303 (2011).

    Article  Google Scholar 

  28. Y. Wang, S. Li, and J. Yi, Sci. Rep. 6 (2016)

  29. Z. Wang, Q. Su, G. Yin, J. Shi, H. Deng, J. Guan, M. Wu, Y. Zhou, H. Lou, and Y.Q. Fu, Mater. Chem. Phys. 147(3), 1068 (2014).

    Article  Google Scholar 

  30. M. Nayeri, M. Fathipour, and A.Y. Goharrizi, J. Phys. D Appl. Phys. 49(45), 455103 (2016).

    Article  Google Scholar 

  31. A. Sengupta, R.K. Ghosh, and S. Mahapatra, IEEE Trans. Electron Dev. 60(9), 2782 (2013).

    Article  Google Scholar 

  32. L. Yang, X. Cui, J. Zhang, K. Wang, M. Shen, S. Zeng, S.A. Dayeh, L. Feng, and B. Xiang, Sci. Rep. 4 (2014)

  33. D. Lloyd, X. Liu, J.W. Christopher, L. Cantley, A. Wadehra, B.L. Kim, B.B. Goldberg, A.K. Swan, and J.S. Bunch, Nano Lett. 16(9), 5836 (2016).

    Article  Google Scholar 

  34. K.P. Dhakal, S. Roy, H. Jang, X. Chen, W.S. Yun, H. Kim, J.D. Lee, J. Kim, and J.H. Ahn, Chem. Mater. 6, 13028 (2014).

    Google Scholar 

  35. Y. Li, Z. Zhou, S. Zhang, and Z. Chen, J. Am. Chem. Soc. 130(49), 16739 (2008).

    Article  Google Scholar 

  36. C.V. Nguyen, V.V. Ilyasov, H.V. Nguyen, and H.N. Nguyen, Mol. Simul. 43(2), 86 (2017).

    Article  Google Scholar 

  37. J.P. Perdew, K. Burke, and Y. Wang, Phys. Rev. B 54, 16533 (1996).

    Article  Google Scholar 

  38. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A.D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, and R.M. Wentzcovitch, J. Phys. Conden. Matter 21(39), 395502 (2009)

    Article  Google Scholar 

  39. J. Bardeen and W. Shockley, Phys. Rev. 80, 72 (1950).

    Article  Google Scholar 

  40. F. Beleznay, F. Bogár, and J. Ladik, J. Chem. Phys. 119(11), 5690 (2003).

    Article  Google Scholar 

  41. C. Ataca, H. Sahin, E. Akturk, and S. Ciraci, J. Phys. Chem. C 115(10), 3934 (2011).

    Article  Google Scholar 

  42. P. Johari and V.B. Shenoy, ACS Nano 6(6), 5449 (2012).

    Article  Google Scholar 

  43. J. Wilson and A. Yoffe, Adv. Phys. 18(73), 193 (1969).

    Article  Google Scholar 

  44. H. RamakrishnaMatte, A. Gomathi, A. Manna, D. Late, R. Datta, S. Pati, and C. Rao, Angew. Chem. Int. Ed. 49(24), 4059 (2010).

    Article  Google Scholar 

  45. A. Lu and R. Zhang, Solid State Commun. 145(5), 275 (2008).

    Article  Google Scholar 

  46. C. Zhang, A. De Sarkar, and R.Q. Zhang, J. Phys. Chem. C 115(48), 23682 (2011).

    Article  Google Scholar 

  47. J.W. Jiang, H.S. Park, and T. Rabczuk, Nanoscale 6(7), 3618 (2014).

    Article  Google Scholar 

  48. Y. Cai, G. Zhang, and Y.W. Zhang, J. Am. Chem. Soc. 136(17), 6269 (2014).

    Article  Google Scholar 

  49. W.S. Yun, S.W. Han, S.C. Hong, I.G. Kim, and R J.D. Lee, Phys. Rev. B 85, 033305 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuong V. Nguyen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phuc, H.V., Hieu, N.N., Hoi, B.D. et al. Tuning the Electronic Properties, Effective Mass and Carrier Mobility of MoS2 Monolayer by Strain Engineering: First-Principle Calculations. J. Electron. Mater. 47, 730–736 (2018). https://doi.org/10.1007/s11664-017-5843-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5843-8

Keywords

Navigation