Skip to main content
Log in

Temporal Response of Dilute Nitride Multi-Quantum-Well Vertical Cavity Enhanced Photodetector

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The temporal response characteristics of a GaInNAs-based vertical resonant cavity enhanced photodetector device are presented for operation at λ ≈ 1.3 μm. The absorption layers of the device are composed of nine 7-nm-thick Ga0.65In0.35N0.02As0.98 quantum wells and are sandwiched between top and bottom AlGaAs/GaAs distributed Bragg reflectors (DBRs). The temperature dependence of the transient photoconductivity (TPC) under different light intensities and bias voltages is reported. Photoluminescence measurements were also performed on structures with and without the top DBR to determine their optical response under continuous illumination. The response time was measured using excitation from a 1047-nm pulsed neodymium-doped yttrium lithium fluoride laser with pulse width of 500 ps and repetition rate of 1 kHz. The rise time of the TPC was 2.27 ns at T = 50 K, decreasing to 1.79 ns at T = 300 K. The TPC decay time was 25.44 ns at T = 50 K, decreasing to 16.58 ns at T = 300 K. With detectivity of \( 2.28 \times 10^{10} \,{\hbox{cm}}\sqrt {\hbox{Hz}} / {\hbox{W}} \) and noise-equivalent power of \( 2.45 \times 10^{ - 11} \,{\hbox{W/}}\sqrt {\hbox{Hz}} \), the proposed device is faster and more sensitive with better signal-to-noise ratio compared with other GaInNAs-based resonant cavity enhanced photodetectors (RCEPDs) for operation at 1.3 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.B. Heroux, X. Yang, and W.I. Wang, Appl. Phys. Lett. 75, 2716 (1999).

    Article  Google Scholar 

  2. G.S. Kinsey, D.W. Gothold, A.L. Holmes, B.G. Streetman, and J.C. Campbell, Appl. Phys. Lett. 76, 2824 (2000).

    Article  Google Scholar 

  3. H. Luo, J.A. Gupta, and H.C. Liu, Appl. Phys. Lett. 86, 211121 (2005).

    Article  Google Scholar 

  4. D. Jackrel, H. Yuen, S. Bank, M. Wistey, J. Fu, X. Yu, Z. Rao, and J.S. Harris, Semiconductor Photodetector II edited by M. J. Cohen and E. L. Dereniak, Proceedings of SPIE. 5726 (2005).

  5. A. Pfenning, F. Hartmann, F. Langer, S. Hoefling, M. Kamp, and L. Worschech, Appl. Phys. Lett. 104, 101109 (2014).

    Article  Google Scholar 

  6. A. Erol and M.C. Arikan, Semiconductor Research edited by A. Patane and N. Balkan (Springer Series in Materials Science, Berlin, 2012).

    Google Scholar 

  7. C.K. Sun, P.K.L. Yu, C.T. Chang, and D.J. Albares, IEEE Trans. Electron Devices 39, 2240 (1992).

    Article  Google Scholar 

  8. H.M. Khalil, Ph.D. Theses, University of Essex (2013).

  9. Q. Han, X.H. Yang, Z.C. Niu, H.Q. Ni, Y.Q. Xu, S.Y. Zhang, Y. Du, L.H. Peng, H. Zhao, C.Z. Tong, R.H. Wu, and Q.M. Wang, Appl. Phys. Lett. 87, 111105 (2005).

    Article  Google Scholar 

  10. K.H. Tan, S.F. Yoon, W.K. Loke, S. Wicaksono, K.L. Lew, A. Stöhr, O. Ecin, A. Poloczek, A. Malcoci, and D. Jäger, Appl. Phys. Lett. 90, 183515 (2007).

    Article  Google Scholar 

  11. H.M. Khalil, N. Balkan, and S. Mazzucato, ASDAM 2012, The Ninth International Conference on Advanced Semiconductor Devices and Microsystems, November 11–15, 2012, Smolenice, Slovakia (2012), pp. 159–162. doi:10.1109/ASDAM.2012.6418578.

  12. H.M. Khalil, S. Mazzucato, and N. Balkan, Phys. Status Solidi C 10, 4 (2013).

    Article  Google Scholar 

  13. Y. Sun, A. Erol, M. Yilmaz, M.C. Arikan, B. Ulug, A. Ulug, N. Balkan, M. Sopanen, O. Reentilä, M. Mattila, C. Fontaine, and A. Arnoult, Opt. Quantum Electron. 40, 7 (2008).

    Article  Google Scholar 

  14. N.Balkan, A. Erol, F. Sarcan, L.F.F. Al-Ghuraibawi, and M.S. Nordin, Superlattices Microstruct. 86, 467 (2015).

  15. Y. Sun, Ph.D. Theses, University of Essex (2008).

  16. Y. Sun and N. Balkan, J. Appl. Phys. 106, 073704 (2009).

    Article  Google Scholar 

  17. E. Ozturk, N.C. Constantinou, A. Straw, N. Balkan, B.K. Ridley, and D.A. Ritchie, Semicond. Sci. Technol. 9, 782 (1994).

  18. L. Gendron, V. Berger, B. Vinter, E. Costard, M. Carras, A. Nedelcu, and P. Bois, Semicond. Sci. Technol. 19, 2 (2004).

    Article  Google Scholar 

  19. B.K. Ridley, Phys. Rev. B 41, 12190 (1990).

    Article  Google Scholar 

  20. B.G. Streetman, J. Appl. Phys. 37, 3137 (1966).

    Article  Google Scholar 

  21. F. Sarcan, M.S. Nordin, F. Kuruoglu, A. Erol, and A.J. Vickers, Superlattices Microstruct. 102, 27 (2017).

  22. P.J. Bishop, M.E. Daniels, B.K. Ridley, S.J. Bass, and L.L. Taylor, Semicond. Sci. Technol. 6, 631 (1991).

    Article  Google Scholar 

  23. P.J. Bishop, M.E. Daniels, B.K. Ridley, E.G. Scott, and G.J. Davies, Semicond. Sci. Technol. 4, 639 (1989).

    Article  Google Scholar 

  24. B.F. Levine, J. Appl. Phys. 74, R1 (1993).

    Article  Google Scholar 

  25. Y.F. Chen, W.C. Chen, R.W. Chuang, Y.K. Su, and H.L. Tsai, Jpn. J. Appl. Phys. 47, 2982 (2008).

    Article  Google Scholar 

  26. J. Wang, J. Hu, P. Becla, A.M. Agarwal, and L.C. Kimerling, Opt. Express 18, 2 (2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Nordin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nordin, M.S., Sarcan, F., Gunes, M. et al. Temporal Response of Dilute Nitride Multi-Quantum-Well Vertical Cavity Enhanced Photodetector. J. Electron. Mater. 47, 655–661 (2018). https://doi.org/10.1007/s11664-017-5815-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5815-z

Keywords

Navigation