Skip to main content
Log in

Optical and electrical properties of modulation-doped n and p-type Ga x In1-x N y As1-y /GaAs quantum wells for 1.3 μm laser applications

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We present a comprehensive study of spectral photoluminescence (PL), photoconductivity and Hall mobility in undoped, n and p-type modulation-doped quantum wells of Ga1-x In x N y As1-y /GaAs with varying nitrogen concentration. We show that the increasing nitrogen composition red shifts the energy gap and this red shift is accompanied with a reduction of the 2D electron mobility in the quantum wells. True temperature dependence of the band gap, free from errors associated with nitrogen induced exciton trapping effects, is observed because in the modulation doped QW samples PL emission is dominated by band-to-band recombination and the S-shape temperature dependence is eliminated. Excellent fit to semi-experimental Varshni equation is obtained and the temperature dependence of the band gap in the linear regime (dE/dT) is tabulated as a function of nitrogen concentration and the type of dopant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexandropoulos, D.: PhD Thesis. University of Essex (2003)

  • Alexandropoulos D. and Adams M.J. (2003). Design considerations for 1.3 μm emission of GaInNAs/GaAs strained quantum-well lasers. IEE Proc. Optoelectron. 150(2): 105–109

    Article  Google Scholar 

  • Balcioglu A., Aahrenkiel R.K. and Friedman D.J. (2000). Evidence of an oxygen recombination center in p(+)-n GaInNAs solar cells. Appl. Phys. Lett. 76: 2397–2399

    Article  ADS  Google Scholar 

  • Calvez S., Clark A.H., Hopkins J.M., Macaluso R., Merlin P., Sun H.D., Dawson M.D., Jouhti T. and Pessa M. (2003). 1.3 μm GalnNAs optically-pumped vertical cavity semiconductor optical amplifier Electron. Letters 39: 100–102

    Google Scholar 

  • Calvez S., Hopkins J.M., Smith S.A., Clark A.H., Macaluso R., Sun H.D., Dawson M.D., Jouhti T., Pessa M., Gundogdu K., Hall K.C. and Boggess T.F. (2004a). GaInNAs/GaAs Bragg-mirror-based structures for novel 1.3 μm device applications. J. Crys. Growth 268: 457–465

    Article  ADS  Google Scholar 

  • Calvez S., Laurand N., Smith S.A., Clark A.H., Hopkins J.M., Sun H.D., Dawson M.D., Jouhti T., Kontinnen J. and Pessa M. (2004b). Investigations of 1.55-μm GaInNAs/GaAs heterostructures by optical spectroscopy. IEE Proc Optoelectron. 151: 442–446

    Article  Google Scholar 

  • Fahy S., Lindsay A. and O’Reilly E.P. (2004). Intrinsic limits on electron mobility in disordered dilute nitride semiconductor alloys. IEE Proc. Optoelectron. 151(5): 352–356

    Article  Google Scholar 

  • Fahy S. and O’Reilly E.P. (2004). Theory of electron mobility in dilute nitride semiconductors. Physica E 21(2–4): 881–885

    Article  ADS  Google Scholar 

  • Geisz J.F. and Friedman D.J. (2002). III-N-V semiconductors for solar photovoltaic applications. Semicond. Sci. Technol. 17: 769–777

    Article  ADS  Google Scholar 

  • Heroux J.B., Yang X. and Wang W.I. (1999). GaInNAs resonant-cavity-enhanced photodetector operating at 1.3 μm. Appl. Phys. Lett. 75: 2716–2718

    Article  ADS  Google Scholar 

  • Kondow M., Kitatani T., Nakatsuka S., Larson M., Nakahara K., Yazawa Y. and Okai M. (1997). GaInNAs: A novel material for long-wavelength semiconductor lasers. IEEE J. Select. Topics Quantum Electron. 3: 719–730

    Article  Google Scholar 

  • Li N.Y., Chang P.C., Baca A.G., Xiue X.M., Sharp P.R., Hou H.Q. and Armour E. (2000). DC characteristics of MOVPE-grown NPN InGaP/InGaAsN DHBTs. Appl. Phys. Lett. 36: 81–83

    Google Scholar 

  • Mitomo J.O., Yokozeki M., Sato Y., Hirano Y., Hino T. and Narui H. (2005). 1.30 μm GaInNAs laser diode with lifetime over 1000 hours grown by MOCVD. IEEE J. Selected Topics in Quant. Electron. 11: 1099–1102

    Article  Google Scholar 

  • Pinault M.A. and Tournie E. (2001). On the origin of carrier localization in Ga1-xInxNyAs1-y/GaAs quantum well. Appl. Phys. Lett. 78(11): 1562–1564

    Article  ADS  Google Scholar 

  • Potter R.J. and Balkan N. (2004). Optical properties of GaNAs and GaInAsN quantum wells. J. Phys.: Condensed Matter 16: 3387–3412

    Article  ADS  Google Scholar 

  • Potter R.J., Balkan N, Carrère H., Arnoult A., Bedel E. and Marie X. (2003). Effect of nitrogen fraction on the temperature dependence of GaNAs/GaAs quantum-well emission. Appl. Phys. Lett. 82: 3400–3402

    Article  ADS  Google Scholar 

  • See special issue of J. Phys. on “Dilute Nitrides”: Condensed Matter, N. Balkan (ed.) 16, 3387 (2004)

  • Vaughan M.P., Ridley B.K.: Solution of the Boltzmann equation for calculating the Hall mobility in bulk GaNxAs1-x . Phys. Rev. B 72(7):Art. No. 075211 (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Balkan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Y., Erol, A., Yilmaz, M. et al. Optical and electrical properties of modulation-doped n and p-type Ga x In1-x N y As1-y /GaAs quantum wells for 1.3 μm laser applications. Opt Quant Electron 40, 467–474 (2008). https://doi.org/10.1007/s11082-007-9163-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-007-9163-8

Keywords

Navigation