Skip to main content
Log in

Fundamental materials studies of undoped, In-doped, and As-doped Hg1−xCdxTe

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Variable magnetic-field Hall and transient photoconductance-lifetime measurements were performed on a series of undoped, In-doped, and As-doped HgCdTe samples grown by molecular beam epitaxy (MBE). Use of quantitative mobility-spectrum analysis (QMSA) combined with multiple carrier-fitting (MCF) techniques indicates that the majority of samples contain an interfacial n-type layer that significantly influences the interpretation of the electrical measurements. This n-type layer completely masks the high-quality electrical properties of undoped or low n-type In-doped HgCdTe, as well as complicating the interpretation of activation in As-doped p-type HgCdTe. Introduction of an intentional n-type background, typically created through doping with In to “recover” high mobility, is actually shown to increase the “bulk” layer conductivity to a level comparable to the interface layer conductivity. Photoconductance-lifetime measurements suggest that In-doping may introduce Shockley-Read-Hall (SRH) recombination centers. Variable-field Hall analysis is shown to be essential for characterizing p-type material. Photoconductance-lifetime measurements suggest that trapping states may be introduced during the incorporation and activation of As. Two distinctly different types of temperature dependencies were observed for the lifetimes of As-doped samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.A. Almeida, J. Electron. Mater. 31, 660 (2002).

    CAS  Google Scholar 

  2. J.R. Meyer, C.A Hoffman, F.J. Bartoli, D.A. Arnold, S. Sivananthan, and J.P. Faurie, Semicond. Sci. Technol. 8, 805 (1993).

    Article  CAS  Google Scholar 

  3. D. Edwall et al., J. Electron. Mater. 33, 752 (2004).

    CAS  Google Scholar 

  4. L.J. van der Pauw, Philips Tech. Rev. 20, 220 (1958).

    Google Scholar 

  5. I. Vurgaftman, J.R. Meyer, C.A. Hoffman, D. Redfern, J. Antoszewski, L. Faraone, and J.R. Lindemuth, J. Appl. Phys. 84, 4966 (1998).

    Article  CAS  Google Scholar 

  6. J. Antoszewski, D.J. Seymour, L. Faraone, J.R. Meyer, and C.A Hoffman, J. Electron. Mater. 24, 1255 (1995).

    CAS  Google Scholar 

  7. J.R. Lowney, D.G. Seiler, C.L. Littler, and I.T. Yoon, J. Appl. Phys. 71, 1253 (1992).

    Article  CAS  Google Scholar 

  8. Y. Gui, B. Li, G. Zheng, Y. Chang, S. Wang, L. He, and J. Chu, J. Appl. Phys. 84, 4327 (1998).

    Article  CAS  Google Scholar 

  9. M.C. Gold and D.A. Nelson, J. Vac. Sci. Technol. A 4, 2040 (1986).

    Article  CAS  Google Scholar 

  10. P.S. Wijewarnasuriya, M. Boukerche, and J.P. Faurie, J. Appl. Phys. 67, 859 (1990).

    Article  CAS  Google Scholar 

  11. N.K. Talipov, V.N. Ovsyuk, V.G. Remesnik, and V.V. Schaschkin, Mater. Sci. Eng. B44, 278 (1997).

    Article  CAS  Google Scholar 

  12. F. Aqariden, H.D. Shih, M.A. Kinch, and H.F. Schaake, Appl. Phys. Lett. 78, 3481 (2001).

    Article  CAS  Google Scholar 

  13. S.M. Sze, Physics of Semiconductor Devices (New York: Wiley, 1981), p. 35.

    Google Scholar 

  14. S. Krishnamurthy and T.N. Casselman, J. Electron. Mater. 29, 828 (2000).

    CAS  Google Scholar 

  15. C.D. Maxey, C.L. Jones, N.E. Metcalfe, R.A. Catchpole, N.T. Gordon, A.M. White, and C.T. Elliot, Proc. SPIE 3122, 453 (1997).

    Article  CAS  Google Scholar 

  16. P. Mitra, T.R. Schimert, F.C. Case, S.L. Barnes, M.B. Reine, R. Starr, M.H. Weiler, and M. Kestigian, J. Electron. Mater. 24, 1077 (1995).

    CAS  Google Scholar 

  17. M. Bevan, Appl. Phys. Lett. 67, 3650 (1995).

    Article  Google Scholar 

  18. T. Tung, J. Cryst. Growth 86, 161 (1988).

    Article  CAS  Google Scholar 

  19. D. Chandra, D.F. Weirauch, H.F. Schaake, M.A. Kinch, F. Aqariden, C.F. Wan, and H.D. Shih (Paper presented at the 2003 U.S. Workshop on the Physics and Chemistry of II–VI Materials, New Orleans, LA, 17–19 September 2003).

  20. O.K. Wu, G.S. Kamath, W.A. Radford, P.R. Bratt, and E.A. Patten, J. Vac. Sci. Technol. A 8, 1034 (1990).

    Article  CAS  Google Scholar 

  21. A.C. Chen, M. Zandian, D.D. Edwall, R.E. De Wames, P.S. Wijewarnasuriya, J.M. Arias, S. Sivananthan, M. Berding, and A. Sher, J. Electron. Mater. 27, 595 (1998).

    Article  CAS  Google Scholar 

  22. V.C. Lopes, A.J. Syllaios, and M.C. Chen, Semicond. Sci. Technol. 8, 824 (1993).

    Article  CAS  Google Scholar 

  23. Y. Nemirovsky, R. Fastow, M. Meyassed, and A. Unikovsky, J. Vac. Sci. Technol. B 9, 1829 (1991).

    Article  CAS  Google Scholar 

  24. R. Pal, V. Gopal, P.K. Chaudhury, B.L. Sharma, P.K. Basu, O.P. Agnihotri, and V. Kumar, J. Electron. Mater. 30, 103 (2001).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swartz, C.H., Tompkins, R.P., Giles, N.C. et al. Fundamental materials studies of undoped, In-doped, and As-doped Hg1−xCdxTe. J. Electron. Mater. 33, 728–736 (2004). https://doi.org/10.1007/s11664-004-0074-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-004-0074-1

Key words

Navigation